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ABSTRACT

In this thesis a dynamical model is developed for general six degrees of freedom quadrotor

vehicle. This is done modularly, and in a layered way. All component models are developed

individually with various levels of dynamical complexity parameterized, themselves forming

interconnected subsystems that together define the resulting vehicle model. The individual

components and subsystems are hence relatively independent of the rest of the model as a

whole and can, if desired, be easily extracted with varying levels of complexity selectable

through parameters set by the user. Along with the more general vehicle hardware dynamics,

existing on board electronics, a network architecture including infrared cameras and operating

system based control, and wireless communication systems are modeled. All model parameters

are identified with the theoretical background, experimental procedure, and numerical results

given for each. Both nested-loop PID and LQR control schemes are developed and imple-

mented, with the resulting performance of each compared to the other as well as the nonlinear

simulation predictions. The LQR design is atypical in that it makes advantageous use of a

systematic procedure to obtain appropriate cost weights, which capture design specifications

while taking direct account of the system structure. The procedure leads to input-state cou-

pling weights consistent with the dynamical limitations of the vehicle, which are key to the

successful applicability of the LQR method for the quadrotor. All results are discussed with

potential further work, issues and improvements highlighted.
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CHAPTER 1. Introduction

Quadrotor helicopters are, as the name suggests, aircraft consisting of four independently con-

trolled rotors which in sum provide all vehicle actuation. The rotation of all four is set up such

that there are two oppositely rotating pairs–each member of each pair located directly across

from the other–such that they are able to counteract each other to a greater or lesser degree

depending on their inputs in order to manipulate the in-plane rotation, or yawing motion,

of the vehicle. Depending on how forward/reverse movement is defined for the vehicle, there

may either be two opposing pairs of rotors whose balance or imbalance controls rolling and

pitching motion, or a single pair controlling each type of motion (see Section 3.2.1). Heave,

i.e. up/down motion in the vehicle or hypothetical pilot frame of reference, is controlled by the

collective thrust of all four rotors. Quadrotor helicopters differ from other common types of

rotor aircraft in several ways, depending the type.

Conventional helicopters typically have one main rotor which is used to control heave as well as

lateral and longitudinal motions through the use of mechanical manipulation of the collective

and cyclic pitch of the rotor blades using a swash plate with accompanying joints and linkages.

In such a setup the rotation speed of the main rotor can be regulated to a constant value while

the collective pitch, i.e. the effective angle of attack of both rotor blades, can be increased

or decreased to increase or decrease the resulting thrust. Lateral and longitudinal cyclic pitch

inputs manipulate the effective angle of attack of each rotor blade pair such that it increases

and decreases as a function of rotor position reaching a maximum or minimum value at either

the right or left, and forward or reverse positions respectively[1]. These inputs essentially cause

the effective rotor disk to tip right/left or forward/back directing the thrust vector accordingly

to create the desired motion. Yawing control, along with some measure of lateral control, is
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accomplished through the use of a tail rotor having separate collective pitch actuation. This

is the most common helicopter architecture, with examples such as the Bell UH-1 Iroquois

(Huey), Sikorsky UH-60 Black Hawk, and Bell 206 model helicopters being probably among

the most easily recognizable.

Other architectures typically remove the necessity of a tail rotor in one way or another. They

include coaxial designs, in which two opposing rotors are stacked one above the other, tandem

rotor designs in which two opposing rotors are offset in the forward/reverse direction, as well

as NOTAR designs making use of internal fans and directed air. Less common intermeshing

designs where two opposing rotors are set so that their planes of rotation intersect as well

as other variations such as tilt rotor aircraft also exist. The Russian Kamov Design Bureau

produces many coaxial helicopters. Relatively well known examples of the tandem rotor design

would be the Boeing CH-47 Chinook or Boeing Vertol CH-46 Sea Knight.

Quadrotor helicopters require neither a tail rotor or any cyclic pitch controls. Most current

quadrotors are smaller electrically powered models which use independently controlled speeds

to increase or decrease the thrust and torque generated by each of the four rotors, further

removing the need for collective pitch controls. This allows for some important advantages,

including the decreased mechanical complexity–hence increased robustness–and the potential

for somewhat simplified rotor modeling, e.g. assuming each rotor force and torque vector has

an effectively constant orientation with respect to the vehicle fuselage and ignoring flapping

dynamics. Also, as with tandem rotor designs, lacking a tail rotor (or other similarly purposed

mechanisms) allows the quadrotor to devote all vehicle power to producing lift. This allows

for significant payload capacity in relation to vehicle weight. This makes them ideal platforms

for applications that might involve attached cameras or other equipment, such as autonomous

surveillance or exploration of difficult to reach and/or dangerous areas.

With such a configuration however, the entire vehicle must tip in one direction or another in

order to direct the rotor thrusts to actuate lateral and/or longitudinal motion. This could be

seen as a potential disadvantage or advantage depending on perspective. It does constrain the

dynamics of the vehicle, in that it cannot cause acceleration forward or back or from side to side
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while maintaining a given orientation. This can be exploited with some control architectures

(see Section 6.1), by essentially treating the system as a orientation system in series with a

translational system, but it can also create potential difficulties with control that treats the

vehicle as a whole (see Sections 7.1 and 7.3) due to the significant interdependence between

angular and linear degrees of freedom.

1.1 Literature Review

Modeling and control of quadrotor helicopters is at present a common area of research and

application, with various levels of model complexity and control design described throughout

recent literature. The modeling of the vehicle dynamics is typically kept relatively simple.

Control methodologies range from linear proportional-integral-derivative (PID)[2, 3, 4, 5, 6, 7],

to linear quadratic (LQ) optimal[8, 3, 7, 9, 10, 11, 12], to various adaptive and semi-adaptive

schemes[13], to feedback linearization[14, 15], backstepping[14, 16], and dynamic inversion[17,

18], among various others. The objectives and the level of control developed varies, with some

sources seeking only to control the orientation of the vehicle, and others seeking to control

orientaiton and position.

These and other sources assume various sensor feedback forms such as on board inertial mea-

surement units (IMU) measuring linear accelerations and angular rates, on board infrared and

SONAR devices measuring distances, on board cameras, and GPS, and sometimes off board

visual or infrared camera systems. Typically when the control is implemented experimentally it

is done so using on board hardware, sometimes accompanied by off board high-level or planning

control or trajectory generation1.

1Unfortunately in some literature control is not always implemented experimentally, i.e. sometimes only
mathematical justification or simulation results are provided, and even when experiments are performed some-
times no comparison to model prediction is provided for verification. In this thesis all control designs are
implemented experimentally and the results provided and discussed.
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1.2 Objectives

The main objectives of this thesis were as follows:

• Develop a detailed, general parametric model of quadrotor vehicle dynamics.

• Develop systematic, repeatable procedures for system parameter identification experi-

ments and data analysis.

• Develop a modular, expandable, parametric nonlinear simulation model from the math-

ematical model.

• Design and implement effective linear control to stabilize the vehicle, provide simple

reference tracking, and model verification.

• Work cooperatively with the MicroCART project.

• Produce a thesis as accessible as possible to readers not already possessing expertise in

the topics presented.

In developing a general mathematical model and simulation of quadrotor dynamics, an ap-

proach was taken to allow for a maximum amount of modularity and flexibility. Individual

components were modeled and parameterized separately, with their interactions within and

between subsystems kept generic.

For example the rigid body dynamics system (Figure 3.4) accepts as input a wrench vector,

i.e. a generic force and torque vector, without any regard for where or how it is produced.

Similarly the model each rotor accepts as input a angular speed and acceleration (as scalar

values independent of vector frame of reference), and outputs an individual wrench vector

defined with respect to a local frame of reference parametrically.

The modeling is intended to be useful for applications and purposes beyond those of this thesis,

and all identification experiments are presented with a level of detail intended to be sufficient

for easy repeatability and/or adaptation to other similar hardware.

Beyond this, working with the MicroCART senior design project to develop the laboratory

network control infrastructure and an initial working vehicle control were intended together to
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provide an existing platform and environment for educational purposes as well as further re-

search. The parametric and flexible nature of the modeling along with the developed laboratory

infrastructure were meant to provide some groundwork for further research into cooperative

and networked autonomous systems.

Finally this thesis was written with the intention that it be as accessible and useful as possible to

senior level undergraduates, beginning graduate students, and/or those not already possessing

a great amount of familiarity with the modeling and control topics presented, while providing

a more in depth development of such topics than is typically found in similar work.

Copies of existing data analysis and identification functions, and a custom Simulink library

containing all components of the nonlinear model used for simulation purposes in this work are

freely available online[19].

1.3 Summary

In what follows, Part I provides a general framework and background. The general notation is

presented along with development of the model frames of reference, orientation representation,

and change of coordinates matrices. Also the 6DOF Newton-Euler rigid body equations of

motion are derived with respect to a general frame of reference within the body and an outline

of Taylor Series based linearization of nonlinear differential equation models is given.

Part II deals with the general symbolic model development as well as parameter identifica-

tion. First an overall system architecture is described, followed by a model architecture which

illustrates the component-by-component and nested-subsystem nature of the overall model cre-

ated. Following this each component is symbolically modeled with emphasis given to thorough

derivation of the resulting equations as well as the resulting equations themselves in that they

are kept as general purpose and parameterized as possible, allowing for easy extraction, mod-

ification, and/or use outside the overall architecture of this work. The modeling presented

here is generally speaking more thorough than is usually encountered in similar literature, with

some distinct additions made in order to yield increased accuracy without significant increase
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in complexity. After the symbolic modeling is complete, all system parameters are identified

with the theory, procedure, and results provided for each and collected in Table 5.3.

Part III deals with control design and implementation. First a nested-loop PID control archi-

tecture is developed, along with a pseudo nonlinear extension allowing the linear control to

be effective at a continuum of heading angles, with the results of both simulation and actual

implementation provided and discussed. This is followed by a LQR control scheme based on the

states not directly observed by the camera system obtained through nonlinear calculation. The

LQR is first designed using a fairly typical methodology, and the weaknesses of this approach

(also mentioned in [3]) are pointed out. A systematic method for obtaining better results is

then presented and the design using it is described and implemented along with the same

pseudo-nonlinear extension as in the PID case. Again the results of both nonlinear simulation

and implementation are discussed.

1.4 Notation

Effort has been made here to use symbolic notation that is as intuitive, consistent, and clear

as possible while still providing adequate representation. To this end, and undoubtedly with

some exceptions, the symbolic representation of quantities follows the general structure:

[

Time Derivative
Other Designation

]

[MAJOR SYMBOL]
[Frame of Reference] [Exponent/Transpose]

[Designation/Index]

The frame of reference is the most commonly missing detail in what follows, which is typically

only given for those quantities recurring in more than one frame of reference. Many quantities

are defined with respect to a particular frame of reference and are only ever used in that local

respect. If such a quantity is ever meant to be represented in another frame of reference, it is

accompanied immediately by the appropriate change of coordinates matrix which should give

some clarification as to which frame of reference the resulting quantity is with respect to.

As a final aid, Table 1.1 provides a reference for most important recurring symbols used.
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Table 1.1: Recurring Symbols

Symbol Units Brief Description

E (none) inertial/Earth frame of reference basis matrix

ex (none) inertial/Earth frame of reference x unit vector

ey (none) inertial/Earth frame of reference y unit vector

ez (none) inertial/Earth frame of reference z unit vector

B (none) chassis/body frame of reference basis matrix

bx (none) chassis/body frame of reference x unit vector

by (none) chassis/body frame of reference y unit vector

bz (none) chassis/body frame of reference z unit vector

m kg vehicle flight mass

g m
s2 scalar acceleration gravity

J kgm2 vehicle flight moment of inertia tensor w.r.t. center of mass

Jxx kgm2 bx principle moment of inertia

Jyy kgm2 by principle moment of inertia

Jzz kgm2 bz principle moment of inertia

vb o
m
s body frame origin velocity expressed in body frame

u m
s component of vb o on bx

v m
s component of vb o on by

w m
s component of vb o on bz

Ωb rad
s body frame angular velocity expressed in body frame

p rad
s component of Ωb on bx

q rad
s component of Ωb on by

r rad
s component of Ωb on bz

[ Ωb ] rad
s skew symmetric matrix equivalent to Ωb ×

Θ rad vector of Euler angles

φ rad roll Euler angle

Continued on next page...
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Table 1.1 –Continued from previous page.

Symbol Units Brief Description

θ rad pitch Euler angle

ψ rad yaw Euler angle

L←−be (none) intertial to body change of coordinates matrix

L←−eb (none) body to inertial change of coordinates matrix

A←−be (none) Θ̇ to Ωb change of coordinates matrix

A←−eb (none) Ωb to Θ̇ change of coordinates matrix

re o m absolute position vector of the origin of B expressed in E

x m component of [ re o] on ex

y m component of [ re o] on ey

z m component of [ re o] on ez

Λ (mixed) rigid body dynamics state vector

rb oc m vector from origin of B to body center of mass

rb oc m skew symmetric matrix equivalent to rb oc×

Fb N vector of total force acting on vehicle expressed in B

Qb Nm vector of total torque acting on vehicle expressed in B

Wb (mixed) total wrench acting on vehicle expressed in B

Fb r N vector sum of rotor forces acting on vehicle expressed in B

Tb i N vector thrust of rotor i expressed in B

ω rad
s vector of all four scalar rotor speeds

α rad
s2

vector of all four scalar rotor accelerations

ωi
rad
s scalar rotational speed of rotor i

KT
kgm
rad2 rotor thrust constant

δT
kg
rad rotor thrust velocity adjustment factor

ΓTi (none) coordinate unit vector giving direction of rotor thrust i w.r.t. B

Hb i N vector in-plane drag of rotor i expressed in B

KH
kg
rad in-plane rotor drag constant

Continued on next page...
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Table 1.1 –Continued from previous page.

Symbol Units Brief Description

ΓH (none) matrix selecting xy-plane hub velocity components w.r.t. B

vhi
m
s velocity of rotor hub i expressed in B

Qb r Nm vector sum of rotor torques acting on vehicle expressed in B

Qb di
Nm vector drag and induced torque of rotor i expressed in B

Kd
kgm2

rad2
rotor drag torque constant

ΓΩi (none) unit vector giving direction of rotor angular velocity i w.r.t. B

Qb Li
Nm vector rotor angular momenteum torque of rotor i expressed in B

J̃r kgm2 equivalent rotor and motor moment of inertia

Qb Fi
Nm vector rotor force lever arm torque of rotor i expressed in B

Wb r (mixed) total rotor wrench acting on vehicle expressed in B

Gb N vector force due to gravity acting on vehicle expressed in B

Qb G Nm vector torques due to gravity acting on vehicle expressed in B

Wb G (mixed) total gravity wrench acting on vehicle expressed in B

Fb D N vector sum of disturbance forces acting on vehicle expressed in B

Qb D Nm vector sum of disturbance torques acting on vehicle expressed in B

Wb D (mixed) total disturbance wrench acting on vehicle expressed in B

KV
rad
V s motor back-emf constant

KQ
Nm
A motor torque constant

Rm Ω motor resistance

if A motor internal friction current

Ṽ V vector of all four equivalent motor voltage inputs

Ṽi V equivalent voltage input for motor i

P (none) vector of all four GU-344 to ESC duty cycle percentages

Pi (none) GU-344 to ESC i duty cycle percentage

P⊥ (none) ESC minimum turn on duty cycle

P̃⊥ (none) GU-344 minimum duty cycle output when active

Continued on next page...
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Table 1.1 –Continued from previous page.

Symbol Units Brief Description

P̃⊤ (none) GU-344 maximum duty cycle output when active

u
Pi

(none) normalized input command to ESC i

Vb V battery voltage

V0 V nominal constant operating battery voltage

δV
V
s approximate constant voltage loss rate

γg
s
rad GU-344 gyroscope gain matrix

γp
s
rad GU-344 gyroscope p gain

γq
s
rad GU-344 gyroscope q gain

γr
s
rad GU-344 gyroscope r gain

kg (none) GU-344 gyroscope overall feedback gain

Aκ (none) GU-344 rate tracking state space A matrix

Bκ (none) GU-344 rate tracking state space B matrix

Cκ (none) GU-344 rate tracking state space C matrix

Dκ (none) GU-344 rate tracking state space D matrix

κT (none) GU-344 throttle channel gain

κA (none) GU-344 aileron channel gain

κE (none) GU-344 elevator channel gain

κRP (none) GU-344 rudder channel proportional gain

κRI (none) GU-344 rudder channel integral gain

ι (none) GU-344 rudder channel integrator state

MG (none) GU-344 signal mixing matrix

us (none) vector of command inputs to GU-344

uT (none) throttle command

uA (none) aileron command

uE (none) elevator command

uR (none) rudder command

Continued on next page...
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Table 1.1 –Continued from previous page.

Symbol Units Brief Description

Yc (mixed) camera system output vector

Tc s camera system frame rate

τc s camera system latency

τT s communication system throttle channel latency

τA s communication system aileron channel latency

τE s communication system elevator channel latency

τR s communication system rudder channel latency

GTx s communication system throttle channel transfer function

GAx s communication system aileron channel transfer function

GEx s communication system elevator channel transfer function

GRx s communication system rudder channel transfer function
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CHAPTER 2. Mathematical/Physical Framework

In this chapter the mathematical and physical framework for all the modeling to follow is

developed. In the first portion, the two main frames of reference are defined along with the

quantities used to describe their relative orientation. Next the matrices allowing for change

of coordinates between the frames of reference are developed. The second portion provides a

thorough derivation of the Netwon-Euler six degree of freedom equations of motion for a rigid

body, and a definition of the moment of inertia tensor.

2.1 Frames of Reference

For the modeling done here, two main frames of reference are utilized. These are the inertial

(Earth) frame of reference and the local chassis or body frame of reference.

2.1.1 Inertial (Earth) Frame of Reference

The inertial (Earth) frame of reference for this model: E ∈ R
3×3, is defined with the orthonor-

mal basis vectors: ex, ey and ez, which are all elements of R3. In what follows, the symbol E

may be used to refer to the frame generally, or to the basis matrix:

E =

[

ex ey ez

]

The origin of this frame of reference is fixed with respect to Earth. The unit vector ez is

positive along the acceleration of gravity, or what would be in typical everyday experience

simply straight down. The orientation of the vectors ex and ey is generally arbitrary so long as

they follow the right hand rule ( i.e. ex × ey = ez, ey × ez = ex , and ez × ex = ey ) but must
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be established in order to define the orientation of the body frame unit vectors with respect to

the Earth frame unit vectors.

Though the surface of Earth is is not a perfect inertial frame of reference, it is assumed close

enough for this model. The Earth frame of reference as defined here, fixed with respect to the

surface, is in fact accelerating due to the motion of the planet. The effects of this acceleration,

e.g. Coriolis effect, are for the purposes of this model negligible (See Appendix A) and the

Earth frame of reference can be treated as effectively inertial [20].

2.1.2 Body Frame of Reference

The body frame for this model: B ∈ R
3×3, is defined with the orthonormal basis vectors: bx,

by and bz, with each an element of R3. In the text that follows the symbol B may be used to

refer to the body frame generally, or as the basis matrix:

B =

[

bx by bz

]

The body frame is completely fixed within the rigid body, i.e. the origin of this frame is fixed

at the nominal1 center of mass, and the unit vectors rotate with any body rotation. The unit

vectors orientations within the body are defined using the right hand rule from the perspective

of a hypothetical pilot: bx is positive forward, by is positive right and bz is positive down.

Also the body frame axes are assumed along the principle inertia axes of the body.2 See [21]

for a more detailed exposition on various choices of frames of reference relating to a moving

body.

The body frame velocites are defined using the unit vectors. The linear velocities: u, v and

w are the body frame of reference origin velocity, expressed as components on bx, by and bz

respectively. Together they form the vector vb o representing the origin velocity expressed in

B. The angular velocities: p, q and r are the components of the body angular velocity vector

on bx, by and bz respectively, where a positive component of angular velocity is defined using

1Nominal because the exact position of the center of mass may be uncertain.
2Assuming the axes are along the inierta axes of the body greatly simplifies the equations of motion in many

ways. This will be mentioned and expanded upon when appropriate throughout what follows. E.g. 2.2.6
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the right hand rule. Together they form the vector Ωb , the body angular velocity expressed in

B.

As is fairly intuitive3, the angular velocity of a rigid body expressed in one frame of reference

fixed with respect to the body will be identical to that expressed in another frame of reference

also fixed with respect to the body if the two frames of reference have axes that are aligned.

In the event their axes are not aligned, the angular veloctiy vector in terms of each differs only

by a static rotation matrix[22]. Hence Ωb does not change if the body frame of reference origin

is not at the center of mass.

2.1.2.1 Body Frame Time Derivative

It will be necessary to define the time derivative of the body frame B in order to perform many

derivations to follow. As detailed more thoroughly in [1] (in the notation used here):

ḃx = (B Ωb )× bx = B













Ωb ×













1

0

0

























ḃy = (B Ωb )× by = B













Ωb ×













0

1

0

























ḃz = (B Ωb )× bz = B













Ωb ×













0

0

1

























Where the × symbol is used to represent the vector cross prodcut. Putting these together

yields the equation:

3Proofs can be found in [20] and [22]
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Ḃ =

[

ḃx ḃy ḃz

]

=













B













Ωb ×













1

0

0

























B













Ωb ×













0

1

0

























B













Ωb ×













0

0

1





































It is convenient to define the matrix [ Ωb ] as a skew-symmetric matrix such that left multipli-

cation with some vector a is equivalent to Ωb × a, i.e.

[ Ωb ] =













0 −r q

r 0 −p

−q p 0













⇒ Ωb × a =













qa3 − ra2

ra1 − pa3

pa2 − qa1













Using this matrix the equation for Ḃ can be expressed as:

Ḃ = B[ Ωb ]I = B[ Ωb ]

So the time derivative of some vector c = Ba would be:

ċ = Ḃa+Bȧ = B[ Ωb ]a+Bȧ = B(ȧ+ Ωb × a)

2.1.3 Body Orienation

Represenation of the orientation of the body, specifically in this case the body frame axes

with respect to the earth frame axes, can be accomplished in more than one way. The two

more widely used methods are Euler angles and quaternions. The Euler angle method involves

the use of three, fairly intuitive angles to describe the orientaton. The quaternion method is

conceptually more complicated and involves the use of four parameters to describe the orien-

tation.

The main disadvantage of the Euler angle method is that singularities occur in the change of

coordinates matrices. This occurs at certain angles regardless of which sequence of rotations is
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used4. For the one used here, such problems occur when the pitch Euler angle, defined here as

θ = ±π/2. The main disadvantage of the quaternion approach is the increased complexity. For

the purposes of this model Euler angles are sufficient since the type of flight that would produce

the previously mentioned singularity is not intended. For a development of the quaternion

approach, see for example [21].

2.1.3.1 Euler Angles

The Euler angles φ, θ, and ψ are used to define the orientation of the body frame axes with

respect to the inertial frame axes. They are also sometimes called roll, pitch, and yaw respec-

tively. The sequence in which the three angles are taken is generally arbitrary, but must be

established in order to change coordinates from one frame of reference to another. The typical

[1] sequence for helicopter modeling is yaw, pitch, roll. This is not universal. For example [1],

[21], [8], and [2] among others use this sequence, while such well established sources as [23] use

another.

2.1.4 Changing Frames

The inertial and body frames of reference as defined here differ in that the origin of the body

frame can be displaced from that of the intertial frame, and the axes of the body frame can

change orientation with respect to those of the inertial frame. The orientation change is of

particular interest and some change of coordinates is necessary to describe a quantity with one

set of basis vectors as opposed to another.

In order to explain the derivation of the change of coordinates matrices, it is useful to define

some temporary sets of axes. First, a set with an origin that translates with the body frame of

reference but does not rotate with it, say E′ = [e′x e
′
y e
′
z]
T . Second, a set that has been rotated

around e′z by ψ, denoted by E′′ = [e′′x e
′′
y e
′′
z ]
T . Third, a set that has been rotated around e′′y ,

by θ, denoted by E′′′ = [e′′′x e′′′y e′′′z ]
T . Finally, rotating by φ around e′′′x yields B.

4A related potential disadvantage of the Euler angle approach is that the three consequtive rotations can be
performed in various different sequences, hence one always has to be careful to define which sequence is used.
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Figure 2.1 Frames E, E′, and B

2.1.4.1 Change of Coordinates Matrices

Given some vector element of R3, represented by coordinates in the body frame of reference

(i.e. a weighted sum of the basis vectors in B), there exists an equivalent set of coordinates

in the inertial frame basis (i.e. weighted sum of the basis vectors in E) which yield the same

vector. In order to obtain the matrix that gives this change of coordinates, it is instructive

to look at how one would, using the three rotation process previously described, form each

successive set of basis vectors using the previous set.

Starting with E′, and first rotating around e′z by ψ:

e′′x = cos(ψ)e′x + sin(ψ)e′y + 0e′z

e′′y = −sin(ψ)e′x + cos(ψ)e′y + 0e′z

e′′z = 0e′x + 0e′y + 1e′z

Which can be expressed using matrix multiplication as:

E′′ = E′













cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1












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Following the same process for the next two rotations gives:

E′′′ = E′′













cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)













B = E′′′













1 0 0)

0 cos(φ) −sin(φ)

0 sin(φ) cos(φ)













Since the orientation of E′ is the same as E, this process can be equivalently expressed as:

B = E













cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

























cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)

























1 0 0)

0 cos(φ) −sin(φ)

0 sin(φ) cos(φ)













Defining the matrix L←−eb as the product the three rotation matrices just used, and multiplying

gives:

L←−eb =













cos(θ) cos(ψ) sin(φ) sin(θ) cos(ψ) − cos(φ) sin(ψ) cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ)

cos(θ) sin(ψ) sin(φ) sin(θ) sin(ψ) + cos(φ) cos(ψ) cos(φ) sin(θ) sin(ψ)− sin(φ) cos(ψ)

− sin(θ) sin(φ) cos(θ) cos(φ) cos(θ)













Using this notation, the body frame of reference basis matrix can be obtained from the inertial

frame of reference basis matrix using right multiplication by L←−eb, i.e.

B = EL←−eb

This also means that the change of coordinates from the body to inertial frame coordinates

can be accomplished through left multiplication by the matrix L←−eb. That is to say, for some

arbitrary pair a and c such that Ea = Bc, the previous development implies:

Ea = Bc⇒ a = L←−ebc

Going from inertial frame coordinates to body coordinates can be accomplished with the matrix

inverse of L←−eb. Since each matrix multiplied to produce L←−eb was orthogonal, L←−eb is itself

orthogonal, and so the inverse is also the transpose[1]:

L←−be = L−1←−
eb

= LT←−
eb
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L←−be =













cos(θ) cos(ψ) cos(θ) sin(ψ) − sin(θ)

sin(φ) sin(θ) cos(ψ) − cos(φ) sin(ψ) sin(φ) sin(θ) sin(ψ) + cos(φ) cos(ψ) sin(φ) cos(θ)

cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ) cos(φ) sin(θ) sin(ψ) − sin(φ) cos(ψ) cos(φ) cos(θ)













And of course:

Ea = Bc⇒ L←−bea = c

It is also desirable to change from body frame angular velocities to the equivalent Euler rates.

However since the Euler angles are essentially coordinates in multiple reference frames, transi-

tioning between the time derivative of the Euler angles and the body frame angular velocities

requires another set of matrices.

The yaw rate represents a coordinate on both e′z = e′′z . Hence in order to translate this

coordinate to its equivalent body frame representation, the 2nd and 3rd rotations previously

used must be applied. The pitch rate is a coordinate on both e′′y = e′′′y , and so only the 3rd

rotation matrix should be applied to it. The roll rate exists as a coordinate on both e′′′x = bx, and

hence does not require the application of any rotation matrix. Expressing this in mathematical

form:













p

q

r













=













1 0 0)

0 cos(φ) sin(φ)

0 −sin(φ) cos(φ)

























cos(θ) 0 −sin(θ)

0 1 0

sin(θ) 0 cos(θ)

























0

0

ψ̇













+













1 0 0)

0 cos(φ) sin(φ)

0 −sin(φ) cos(φ)

























0

θ̇

0













+













φ̇

0

0













Which can be simplified to give:













p

q

r













=













1 0 − sin(θ)

0 cos(φ) sin(φ) cos(θ)

0 − sin(φ) cos(φ) cos(θ)

























φ̇

θ̇

˙psi













Where the change of coordinates matrix from Euler rates to body frame angular velocities can
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be defined as:

A←−be =













1 0 − sin(θ)

0 cos(φ) sin(φ) cos(θ)

0 − sin(φ) cos(φ) cos(θ)













Going from the body frame angular velocities to the Euler rates can be accomplished with the

matrix inverse of A←−be.

A←−eb = A−1←−
be

A←−eb =













1 sin(φ) tan(θ) cos(φ) tan(θ)

0 cos(φ) − sin(φ)

0 sin(φ)/ cos(θ) cos(φ)/ cos(θ)













2.1.4.2 Change of Coordinates Matrix Time Derivative

In what follows it will also be useful to have an expression for the time derivative of the change

of coordinates matrix L←−eb. Assuming some arbitrary pair a and c such that Ea = Bc, i.e.

a = L←−ebc, the equation can be written:

EL←−ebc = Bc

Taking the time derviative of both sides:

E(L̇←−ebc+ L←−ebċ) = B( Ωb × c+ ċ)

Using the fact that EL←−eb = B and cancelling:

EL̇←−ebc = EL←−eb( Ωb × c)

L̇←−eb = L←−eb[ Ω
b ]
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2.2 Newton-Euler Rigid Body Dynamics

Newton-Euler equations describe the combined three dimensional linear and angular dynamics

of a rigid body. The derivation that follows is general in that the point of reference is not

necessarily assumed to be conincident with the body center of mass. The results obtained

are then significantly simplified under the assumption that the point of reference (body frame

origin) is coincident with the center of mass. The position of the origin of the body fixed

Figure 2.2 Position Radii for Rigid Body

frame of reference expressed in terms of the Earth frame unit vectors is:

ro = E re o ⇒ ṙo = E ṙe o

The position of any arbitrary point p within the body relative to the origin of some frame of

reference fixed within the body, rop, can be expressed in terms of either the fixed body frame

or the Earth frame:

rop = E re op = B rb op ⇒ re op = L←−be rb op

The rate of change (velocity) of the body frame origin can be expressed in the body frame of

reference by defining the quantity vb o as follows:

ṙo = E ṙe o = B vb o
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Since the Earth frame of reference is being treated as inertial here5, the basis matrix E can be

treated as an identity matrix, and the basis matrix B is hence equal to the change of coordinates

matrix L←−eb. This allows the notation to be simplified as E can be ommitted and B and its

time derivative expression replaced by the equivalent forms of L←−eb recently derived.

Putting all this together and expressing the derivative of rop using the results of Sections 2.1.2.1

and 2.1.4.2 , the velocity of any arbitrary poiont within the body can be expressed:

ṙp = L←−eb( v
b
o + Ωb × ( rb oc + rb cp))

2.2.1 Momentum

The momentum of a point mass is simply the product of the mass with the inertial velocity.

The momentum of a body can be found by treating the body as a continuum of mass with

a density function defined for each point contained within the body volume, and integrating

the product of the velocity at each point and the infinitesimal mass at that point over the set

defined by the body:

P =

∫

∀rcp

ṙpρ(rcp)dV = L←−eb

∫

∀ rb cp

( vb o + Ωb × ( rb oc + rb cp))ρ( r
b
cp)dV

Where P is the momentum, the expression ∀ rb cp means all radii corresponding to the set of all

points defined by the body, and ρ( rb cp)dV is the mass density as a function of position within

the body mulitipled by the differential volume, i.e. the differential mass.

Most of the quantities in the integral for momentum do not depend on the variable rb cp and

can be pulled out. Now by definition
∫

∀ rb cp
ρ( rb cp)dV = m. Also, by definition of center of

mass, an integral of rb cp over the set of all rb cp must be 0. Therefore an integral of some

quantity or quantities not dependent on rb cp and rb cp over this set must also be 0.6 Hence

∫

∀ rb cp
( Ωb × rb cp)ρ( r

b
cp)dV = 0, leaving the expression of momentum with respect to the body

5See Appendix A
6This fact will be used repeatedly throughout the derivation of the rigid body dynamics.
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frame of reference as:

Pb = m( vb o + Ωb × rb oc)

Assuming the reference point is at the center of mass would allow this to be simplified to:

Pb = m vb o = m vb c

2.2.2 Force

Force is by definition the time derivative of momentum. Using the previous expression for

momentum and the fact that time derivation can be brought inside a volume integral, force

can be expressed as:

F = Ṗ = L←−eb

∫

∀ rb cp

( v̇b o + Ω̇b × ( rb oc + rb cp) + Ωb × vb o + Ωb × ( Ωb × rb oc))ρ( r
b
cp)dV

Again bringing terms not dependent on rb cp out of the integral and canceling terms dependent

on a singular rb cp and evaluating what remains, the expression for force with respect to a fixed

body frame of reference can be simplified to:

Fb = m( v̇b o + Ωb × vb o + Ω̇b × rb oc + Ωb × ( Ωb × rb oc))

Defining the origin acceleration ab o = v̇b o + Ωb × vb o, this can also be expressed as:

Fb = m( ab o + Ω̇b × rb oc + Ωb × ( Ωb × rb oc))

Which matches the form given in [22, 13]. In terms of the center of mass acceleration:

ab c = ab o + Ω̇b × rb oc + Ωb × ( Ωb × rb oc)

The force equation takes the familar F = ma form:

Fb = m ab c
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Rearranging the equation for ab c, i.e. solving for ab o and noting that rb oc = − rb co gives a

potentially more intuitive/illustrative form of the relationship:

ab o = ab c + Ω̇b × rb co + Ωb × ( Ωb × rb co)

Which can be read as: The acceleration of the origin equals the acceleration of the center of

mass plus additional tangental acceleration and centripetal acceleration due to the origin offset

from center of mass.

2.2.3 Angular Momentum

As given in [24] and elsewhere, the angular momentum for a body can be expressed similarly

to the previous expression for linear momentum as:

L =

∫

∀rcp

(rp × ṙp)ρ(rcp)dV

Writing these quantities in component form the expression becomes:

L =

∫

∀ rb cp

(ro + L←−eb( r
b
oc + rb cp))× L←−eb( v

b
o + Ωb × rb oc +ΩB × rb cp)ρ( r

b
cp)dV

Multiplying through, separating and bringing terms not dependent on rb cp out of the integral

leads to:

L = ro × L←−ebm( vb o + Ωb × rb oc) + L←−eb( r
b
oc ×m vb o) + · · ·

L←−eb

∫

∀rcp

( rb oc × ( Ωb × rb oc) + rb oc × ( Ωb × rb cp) + · · ·

rb cp × vb o + rb cp × ( Ωb × rb oc) + rb cp × ( Ωb × rb cp))ρ( r
b
cp)dV
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Now as before, canceling terms with only one rb cp, the fact that L←−ebm( vb o+ Ωb × rb oc) = P , and

further using the identity that for some pair of vectors a and b, a×(b×a) = (aTaI−aaT )b:

L = ro × P + L←−eb( r
b
oc ×m vb o) + · · ·

L←−eb






rb T
oc r

b
ocI − rb oc r

b T
oc +

∫

∀rcp

( rb T
oc r

b
ocI − rb oc r

b T
oc)ρ( r

b
cp)dV






Ωb

Defining the moment of inertia tensor with respect to center of mass:

J =

∫

∀rcp

( rb T
cp r

b
cpI − rb cp r

b T
cp)ρ( r

b
cp)dV (2.2.3.1)

And the moment of inertia tensor with respect to an arbitrary origin:

Jo = J + rb T
oc r

b
ocI − rb oc r

b T
oc (2.2.3.2)

Allows for the more compact notation:

L = ro × P + L←−eb(Jo Ωb + rb oc ×m vb o)

So the angular momentum with respect to the body frame of reference can be expressed:

Lb = Jo Ωb + rb oc ×m vb o

This can be further simplified using the fact that m vb o = Pb − Ωb × rb oc and simplifying allows

an expression for angular momentum using the moment of inertia tensor with respect to center

of mass:

Lb = J Ωb + rb oc × Pb

2.2.4 Torque

Torque, or moment of force, is defined as the time derivative of angular momentum:

Q = L̇ =

∫

∀rcp

(rp × r̈p)ρ(rcp)dV
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Which is in expanded form:

Q =

∫

∀ rb cp

(ro + L←−eb( r
b
oc + rb cp))× L←−eb( v̇

b
o + Ωb × vb o + · · ·

Ω̇b × rb oc + Ω̇B × rb cp + Ωb × ( Ωb × rb oc) + Ωb × ( Ωb × rb cp))ρ( r
b
cp)dV

As before, multiplying through, separating, collecting and bringing out terms not dependent

on position within the body, canceling those depending on a single rb cp term, and using the

same simplification as with angular momentum and the moment of inertia tensor (in order to

save a large amount of space, the details are not presented this time) gives:

Q = mro × L←−eb( v̇
b
o + Ωb × vb o + Ωb × ( Ωb × rb oc)) + · · ·

m rb oc × ( v̇b o + Ωb × vb o) + Jo Ω̇b + Ωb × (Jo Ωb )

Which can be written:

Q = ro ×mac + L←−eb( r
b
oc ×m( v̇b o + Ωb × vb o) + Jo Ω̇b + Ωb × (Jo Ωb ))

Giving an expression for torque with respect to the body frame of reference as:

Qb = rb oc ×m( v̇b o + Ωb × vb o) + Jo Ω̇b + Ωb × (Jo Ωb )

As with angular momentum, if desirable, this expression can be further simplified. Using the

fact that m( v̇b o+ Ωb × vb o) = Fb −m Ω̇b × rb oc−m Ωb ×( Ωb × rb oc) and doing some cancelation

and simplification leads to a form matching that in [13]:

Qb = J Ω̇b + Ωb × J Ωb + rb oc × Fb

In any case, if the point of reference is the center of mass:

Qb = J Ω̇b + Ωb × J Ωb
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2.2.5 Equation of Motion

By defining the matrix:

[ rb oc] =













0 − rb oc.z rb oc.y

rb oc.z 0 − rb oc.x

− rb oc.y rb oc.x 0













Meaning that, as with the same form of definition in Section 2.1.2.1, for some vector a

rb oc × a = [ rb oc]a

And bringing the previously derived results for force and torque together, the resulting equation

of motion can be expressed in matrix form as:







Fb

Qb






=







mI −m[ rb oc]

[0] J













v̇b o

Ω̇b






+







Ωb ×m( vb o + Ωb × rb oc)

Ωb × J Ωb + rb oc × Fb






(2.2.5.1)

If the origin of the fixed body frame of reference is taken to coincide with the center of mass,

the equation of motion simplifies to:







Fb

Qb






=







mI [0]

[0] J













v̇b o

Ω̇b






+







Ωb ×m vb o

Ωb × J Ωb






(2.2.5.2)

2.2.6 Moment of Inertia Tensor

The moment of inertia tensor as previously defined in Equation 2.2.3.1 is:

J =

∫

∀rcp

( rb T
oc r

b
ocI − rb oc r

b T
oc)ρ( r

b
cp)dV

Expanding this gives:

J =



















∫

∀ rb
cp

( rb
cp.y

2 + rb
cp.z

2)ρ( rb
cp
)dV −

∫

∀ rb
cp

( rb
cp.x

rb
cp.y

)ρ( rb
cp
)dV −

∫

∀ rb
cp

( rb
cp.x

rb
cp.z

)ρ( rb
cp
)dV

−
∫

∀ rb
cp

( rb
cp.x

rcp.yy
)ρ( rb

cp
)dV

∫

∀ rb
cp

( rb
cp.x

2 + r2
cp.zz

)ρ( rb
cp
)dV −

∫

∀ rb
cp

( rb
cp.y

rcp.zz)ρ( r
b

cp
)dV

−
∫

∀ rb
cp

( rb
cp.x

rb
cp.z

)ρ( rb
cp
)dV −

∫

∀ rb
cp

( rb
cp.y

rb
cp.z

)ρ( rb
cp
)dV

∫

∀ rb
cp

( rb
cp.x

2 + rb
cp.y

2)ρ( rb
cp
)dV


















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Where:

rb cp =













rb cp.x

rb cp.y

rb cp.z













Making the following defintions:

Jxx =

∫

∀ rb cp

( rb cp.y
2 + rb cp.z

2)ρ( rb cp)dV

Jyy =

∫

∀ rb cp

( rb cp.x
2 + rb cp.z

2)ρ( rb cp)dV

Jzz =

∫

∀ rb cp

( rb cp.x
2 + rb cp.y

2)ρ( rb cp)dV

Jxy =

∫

∀ rb cp

( rb cp.x r
b
cp.y)ρ( r

b
cp)dV

Jxz =

∫

∀ rb cp

( rb cp.x r
b
cp.z)ρ( r

b
cp)dV

Jyz =

∫

∀ rb cp

( rb cp.y r
b
cp.z)ρ( r

b
cp)dV

The moment of inertia tensor with respect to the center of mass may be expressed more

compactly:

J =













Jxx −Jxy −Jxz

−Jxy Jyy −Jyz

−Jxz −Jyz Jzz













(2.2.6.1)

As discussed in [23, 24], for any origin fixed within a rigid body there exists an alignment of

the frame of reference axes such that the moment of inertia tensor is diagonal. This alignment

is when the axes of the body frame of reference are coincident with the body principle axes

of inertia. For the purposes of this model, it will be assumed that the nominal body frame of

reference axes are aligned with the principle axes. Under this assumption:

J =













Jxx 0 0

0 Jyy 0

0 0 Jzz













(2.2.6.2)



www.manaraa.com

29

CHAPTER 3. System Architecture

3.1 Overall System

The overall system at a high level consists of the quadrotor vehicle (plant), sensor system

in this case composed of infrared cameras and image processing, control system implemented

on a PC, and communication system consisting of an FPGA, radio transmitter, and receiver.

The communication system compoents (other than the FPGA) are along with the quadro-

tor commercially avialable off-the-shelf consumer products. The infrared camera system is a

commercially available motion tracking system with acconmpanying processing and streaming

software. See Table 5.1. Software accomplishing the input/output and control processsing was

created specifically for this applicaton. The processing and control agorithms were designed

as part of this work, while the bulk of the software background was implemented by members

of senior design teams working cooperatively on projects overlapping this work. See Table

5.2.

Figure 3.1 Overall System

Each of these systems is described in greater detail in the sections that follow.
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3.2 Quadrotor

The specific vehicle used in this work was a GAUI 330X-S model quadrotor helicopter[25]

available as a consumer product1. The quadrotor system included a lightweight frame, four

brushless DC electric motors (GUEC GM-410 brushless DC motors) with 8-inch rotors, four

brushless DC motor controllers (GUEC GE-010 10A BLDC ESCs), and an on board input signal

mixer and gyroscope unit (GU-344). Each of these components is modeled and parameterized

in later sections of this work. The specific convention used in all of what follows for rotor

identification and positioning is described below.

3.2.1 Body Frame Axes and Rotor Numbering

The four rotors of the vehicle are numbered 1 through 4. The body frame of reference axes

described in Section 2.1.2 are defined such that when viewed against the positive body frame

z-axis (bz), or technically from below the quadrotor, with by pointing up and bx pointing right

in view, rotor 1 is in the 1st (upper-right or +x,+y) quadrant, and rotor 2, rotor 3, and rotor

4 are in the 2nd (-x,+y), 3rd (-x,-y), and 4th (+x,-y) quadrants respectively. Viewed with bz,

rotors 1 and 3 have a negative angular velocity vector, while 2 and 4 have positive angular

velocity vectors following the right-hand rule. A top down, i.e. bz into the page view of this

setup is given in Figure 3.2 with the rotation direction of each rotor indicated.

This choice of axes matches one of two [25] flying mode settings available with the vehicle

on-board electronics, one of which corredponds to a set of axes as described here, and another

which corresponds to those axes rotated by π
4 rad in the xy plane such that bx and by run

through the rotors. This setting would primarily affect all hub radii as used in Section 4.2 and

the command mixing matrix of Equation 4.5.3.1.

1At the time of this writing, production of this specific line may be discontinued and hence be hard to find.
Similar products from the same manufacturer are likely avialable, with many of the sub-components potentially
identical.
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Figure 3.2 Body Axes and Rotor Numbering

3.2.2 Physical Architecture

The physical architecture of the quadrotor used here is shown in Figure 3.3. The receiver shown

here as part of the quadrotor system is techincally considered part of the communications system

in this model, but is physically present on the vehicle and is shown nonetheless.

Figure 3.3 Quadrotor Physical Architecture
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3.2.3 Model Architecture

The quadrotor model architecture is shown in Figure 3.4. The quadrotor as a whole is broken

down successively into smaller and smaller subsystems for modeling purposes. The main three

subsystems the quadrotor vehicle is broken down into are the GU-344, Wrench System, and

Rigid Body Dynamics System.

Figure 3.4 Quadrotor Model Architecture

3.2.3.1 GU-344

The GU-344 subsystem is broken down further into components representing the gyroscope

angular velocity feedback, angular velocity tracking, and control mixing functionality of the

unit, which are all described in Section 4.5 symbolically and Section 5.6 numerically. The

input to the GU-344 is the vector us of inputs as obtained from the receiver consisting of the

throttle, aileron, elevator, and rudder values. The output P is a vector of four duty cycle

percentage values sent to the four motor speed controls.

3.2.3.2 Wrench System

The Wrench System is broken down into the Powertrain subsystem, Gravity, and Disturbance.

Wrench here describes a vector of combined force and torque, i.e. for some force F and torque



www.manaraa.com

33

Q the corresponding wrench is [F Q]T . The Wrench System output Wb is the sum total of all

forces and torques that act on the quadrotor. As modeled these are the Rotor System Wrench,

( Wb r), Gravity Wrench, ( Wb G), and Disturbance Wrench, ( Wb D). The Disturbance Wrench

is simple an input to the model to allow for any type of force and torque disturbance. The

Gravity Wrench is described in Section 4.3.

3.2.3.3 Powertrain

The Powertrain is further broken down into the Battery, ESC System, Motor System, and

Rotor System. The Battery output in this model is the voltage Vb, and the modeling for this

component is described in Section 4.2.7 symbolically and Section 5.4 numerically. The ESC and

Motor Systems are described symbolically in Sections 4.2.4, 4.2.5, and 4.2.6, and numerically

in Sections 5.3 and 5.5.5.

The output of the ESC System and input to the Motor System, Ṽ , is a vector of the effective

voltag for any given energized phase of each of the brushless DC motors. The output of the

Motor system M is a vector representing the four angular speeds (represented by the vector ω)

and accelerations (represented by the vector α).

3.2.3.4 Rotor System

The Rotor System is where the inputs are actuated. The rotor system is modeled as producing

a number of forces and torques. The rotor forces modeled here are the thrust and in-plane drag

force or H-Force. These are modeled symoblically in Sections 4.2.1.1 and 4.2.1.2 respectively,

and numerically in Sections 5.5.1, 5.5.2, and 5.5.3. The rotor torques modeled here are the

in-plane drag and induced torque, change in angular momentum torque, and force lever arm

torque. These are modeled symbolically in Sections 4.2.2.1, 4.2.2.2, and 4.2.2.3 respectively,

and numerically in Sections 5.5.4 and 5.5.5.
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3.3 Sensor System

The sensor system used here consists of 12 infrared cameras (OptiTrack VR:100), two syn-

chronized camera hubs (OptiHub-2) an the Optitrack Tracking Tools processing software. The

OptiTrack system provided the 6DOF position and orientation of the quadrotor in real time

(see Section 5.7 for frame rate, latency, and accuracy details) using VRPN (see Table 5.2)

streaming to the control PC. The orientation data was streamed in terms of quaternions and

converted to the correct Euler angles using built in VRPN libraries.

3.4 Control System

The control system used for this work is entirely implemented in software, predominantly

written in C++, and run on a PC with Ubuntu 7.10 operating system. The control software

not only implements the control and any estimation algorithms but also logs all desired data for

analysis purposes. It is assume capable of operating on every sample received from the Camera

System with negligable delay and no numerical issues2. Its basic architecture is depicted in

Figure 3.5.

Figure 3.5 Control System Setup

2E.g. fixed point issues possibly encountered with microprocessors. The PC utilized contained a 64-bit
processor.
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3.5 Communication System

The communication system as defined in this model consists of an FPGA, radio transmitter, and

receiver. The FPGA serves as the interface between the control PC and the radio transmitter,

and the receiver as the interface to the quadrotor vehicle GU-344 unit. It is treated as a simple

series connection of these components.

Figure 3.6 Communication System
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CHAPTER 4. Symbolic Modeling

4.1 Rigid Body Dynamics

Equation 2.2.5.1, repeated here:







Fb

Qb






=







mI −m[ rb oc]

[0] J













v̇b o

Ω̇b






+







Ωb ×m( vb o + Ωb × rb oc)

Ωb × J Ωb + rb oc × Fb







Was derived in a form that makes it easy to solve for the accelerations. Since the matrix

multiplying the accelerations vector for any possible realistic physical scenario must be full

rank, it is guaranteed to have an inverse. So the accelerations are given:







v̇b o

Ω̇b






=







mI −m[ rb oc]

[0] J







−1 





Fb − Ωb ×m( vb o + Ωb × rb oc)

Qb − Ωb × J Ωb − rb oc × Fb






(4.1.0.1)

4.1.1 Rigid Body Dyanmics State Equation

The rigid body dynamics of the quadrotor are taken as a nonlinear subsystem. The state vector

for the system, Λ, is defined to consist of the body frame of reference velocities, the inertial
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frame of reference position, and orientation, defined as:

Λ =



















vb o

Ωb

re o

Θ



















=











































































u

v

w

p

q

r

x

y

z

φ

θ

ψ











































































It is assumed here that the origin of the body frame of reference is coincident with the center of

mass and that its axes are aligned with the principle axes of inertia. In this situation, rb oc = 0

and the moment of inertia tensor J is diagonal as defined in Equation 2.2.6.2, which allows

Equation 4.1.0.1 to be simplified to:






v̇b o

Ω̇b






=







1
mI [0]

[0] J−1













Fb − Ωb ×m vb o

Qb − Ωb × J Ωb






=







1
m Fb − Ωb × vb o

J−1 Qb − J−1 Ωb × J Ωb







Now the remaining quantites in the state vector are re o and Θ. The portion of the state

equation for each may be defined in terms of vb o and Ωb respectively as:

ṙe o = L←−eb vb o

Θ̇ = A←−eb Ωb

So defining fRB(Λ, W
b ) = Λ̇:

fRB(Λ, W
b ) =



















v̇b o

Ω̇b

ṙe o

Θ̇



















=



















1
m Fb − Ωb × vb o

J−1 Qb − J−1 Ωb × J Ωb

L←−eb vb o

A←−eb Ωb



















(4.1.1.1)
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4.2 Powertrain

While conventional helicopters require two cyclic pitch controls to perform longitudinal and

lateral movements, quadrotors due to their configuration do not and have rotors without any

need of cycylc pitch inputs. Also, conventional helicopters typically use collective pitch ad-

justment to increase or decrease thrust on either their main or tail rotor, while smaller scale

electrically powered aircraft like the quadrotor being modeled here are able to use rotation

speed adjustment.1

4.2.1 Rotor Force

The forces that apply to the rotors in this model are the thrust T , and in-plane force H.

Things like rotor side force developed in [26] are applicable only to rotor systems with cyclic

inputs, which the rotors modelled here do not have. It is typical to give both rotor force and

torque quantities using coefficient forms. In this case a thrust coefficient and H-force coefficient,

defined as:

CT =
|T |

ρA(ωr)2

CH =
|H|

ρA(ωr)2

Where ρ is the density of air, A is the rotor disc area, r is the rotor radius, and ω is the rotor

angular speed. Nearly identical, and very thorough expressions for the thrust coefficient are

given in [1, p. 111] and [26, p. 176], and slightly less detailed in [27, p. 98] and [28, p. 82]. The

main difference between the two pairs being the inclusion of terms for rotor blade twist and

lateral cyclic pitch. The rotors for this model are taken to have negligable twist effects and of

course no cyclics.

1The ability to control collective pitch, especially to the extent of reversing the direction of thrust, can be
used in the performance of aggressive acrobatic maneuvers.
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4.2.1.1 Thrust

An iterative scheme for solving a set of equations to define the necessary quantities for calcu-

lation of rotor thrust is given in [1] and [29, 30]. Using those from [29, 30] since they are in a

simplified form appropriate for this model:

CT =
a0σ

2

(

θ0

(

1

3
+
µ2

2

)

+
µz − λ0

2

)

λ0 =
CT

2
√

µ2 + (λ0 − µz)2

Where a0 is a constant lift curve slope, σ is the solidity ratio, θ0 is the collective pitch (in this

case a constant), µ is the advance ratio, µz is the normal airflow component, and λ0 is the

inflow ratio (the ratio of the induced velocity to the rotor tip speed). The advance ratio and

normal airflow componets are defined:

µ =

√

(u− uwind)2 + (v − vwind)2

ωr
(4.2.1.1)

µz =
w − wwind

ωr
(4.2.1.2)

Where u,v, and w are the body frame of reference linear velocity components as defined in

Section 2.1.2. The iterative process begins by defining a function with a zero at the sought

parameter values:

g0 = λ0 −
CT

2(µ2 + (λ0 − µz)2)

Using Newton’s method, the estimate following the jth estimate is obtained as:

λ0j+1 = λ0j + fjhj(λ0j )

Where:

hj = −

(

g0
dg0/dλ0

)

λ0=λ0j

⇒ hj =

(

2λ0j
√

µ2 + (λ0 − µz)2 − CT

)

(

µ2 + (λ0 − µz)
2
)

2 (µ2 + (λ0 − µz)2)
3/2 + a0σ

4 (µ2 + (λ0 − µz)2)− CT
(

µz − λ0j
)

Where fj is a damping factor to stabilize the calculation especially near hover, with both [1, 29]

obtaining best results at a value of 0.6.
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While the iterative scheme can yeild accurate results over a large range of flight conditions,

for the purposes of this model, i.e. relatively low velocity non-acrobatic flight, some simpli-

fying assumptions can be made. Typical rotor speeds for this model will exceed 500rads , so

assuming the translational velocities of the craft are kept low enough, the approximation can

be made:

µz ≈ 0 µ ≈ 0

The set of equations dealing with rotor thrust simplify:

λ0 =
CT

2
√

λ20
=⇒ CT = 2λ20

CT =
1

6
a0σθ0 −

1

4
a0σλ0

With this simplification the need for an iterative solution is gone and a close form solution

for λ0 can be found. The above equations can be combined to form a quadratic equation in

λ0:

2λ20 +
1

4
a0σλ0 −

1

6
a0σθ0 = 0

Which gives the solution:

λ0 =
−a0σ

16
+

1

4

√

(

1

4
a0σ

)2

+
4

3
a0σθ0

Which is for this model, all constants. Also since:

CT = 2λ20 =
|T |

ρ(rω)2πr2

|T | = 2λ20ρ(rω)
2πr2 = [2λ20ρπr

4]ω2

Defining the constant KT = 2λ20ρπr
4 the thrust expression becomes:

|T | = KTω
2

This is the form of the thrust equation found in [8, 2, 13, 3] among many, many others2. In

order to take some account of the changes in thrust due to velocity while keeping a closed form

expression, the adjustment factor3 δT = [δTx δTy δTz ] is defined such that:

2Just about every source with a quadrotor model containing an expression for thrust as a function of rotor
speed uses this form.

3See Section 5.5.2 for detailes on this adjustment factor and explanation for why only the thrust equation
has such a parameter.
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|T | = KTω
2 + δT vhω (4.2.1.3)

Where vh is the velocity of the rotor hub in a local reference frame. For this quadrotor, vh can

be represented using the velocity of the body frame of reference origin and the radius of the

hub from that origin rh as:

vh = vb o + Ωb × rh (4.2.1.4)

In order to represent the thrust of each rotor in vector form, the quantity ΓTi is defined as a

unit vector giving the direction of thrust i in the body frame of reference. With each rotor

assumed to be attached so that thrust is along −bz or exactly ”straight up” in the body frame

of reference:

Ti = −(KTω
2
i + δT vhωi)bz ∀i

⇒ ΓTi =













0

0

−1













∀i

That is:

Ti = B(KTω
2
i + δT vhiωi)ΓTi

Or as body frame quantities:

Tb i = (KTω
2
i + δT vhiωi)ΓTi (4.2.1.5)

4.2.1.2 H-force

The H-force, developed in e.g. [26, p. 177], is the in-plane force due to the drag on the rotors

when the vehicle has some in-plane velocity relative to the air. The H-force coefficient similar

to the thrust version can be expressed:

CH =

(

σa0θ0λ0 + σCd0
4

)

µ

Where Cd0 is defined in Section 4.2.2.1 and all other symbols are as previously described in

Section 4.2.1.1. Here the expression needs to be adjusted for each of the four rotors. Adjusting



www.manaraa.com

42

advance ratio µ as defined in Equation 4.2.1.1 and using the expression for hub velocity given

in Equation 4.2.1.4, the equivalent advance ratio for each rotor is the same form with the hub

velocity quantities subsituted4:

µhi =

√

(vhix )
2 + (vhiy )

2

ωiri

CHi =

(

σa0θ0λ0 + σCd0
4

)

µhi

|Hi| = CHi(ρAi(ωiri)
2) =

(

ρAir
2
i σa0θ0λ0 + ρAir

2
i σCd0

4

)

µhiω
2
i

Using Ai = πr2i and µhi =
√

(vhix )
2 + (vhiy )

2/ωiri:

|Hi| =

(

ρπr3i σ(a0θ0λ0 + Cd0)

4

)

√

(vhix )
2 + (vhiy )

2ωi

The direction of this force is always opposite the direction of in plane motion, i.e. it is opposite

the vector [vhix vhix 0]T . Defining the unit version of that vector:

1
√

(vhix )
2 + (vhiy )

2













vhix

vhix

0













Using this and defining the constant KH =
(

ρπr3i σ(a0θ0λ0+Cd0 )

4

)

, the vector for each force can

be expressed as a body frame quantity:

Hb i = −KHωi













vhix

vhiy

0













Defining:

ΓH =













1 0 0

0 1 0

0 0 0













The H-force of each rotor can be expressed as:

Hi = −B(KHωiΓHvhi)

Hb i = −KHωiΓHvhi (4.2.1.6)

4Wind velocity is not repeated but in circumstances where wind would play a role it would need to be
reintroduced
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4.2.1.3 Total Rotor System Force

The resulting total force in the body frame of reference due to the rotors can be expressed

as:

Fb r =
4

∑

i=1

( Tb i + Hb i) (4.2.1.7)

Where Tb i and Hb i are defined in Equation 4.2.1.5 and Equation 4.2.1.6 respectively. Expanding

this expression gives:

Fb r =

4
∑

i=1

((KTω
2
i + δT ( v

b
o + Ωb × rhi)ωi)ΓTi −KHωiΓH( v

b
o + Ωb × rhi))

4.2.2 Rotor Torque

The torques created by the rotors in this model are the in-plane drag and induced torue Qd,

change in angular momentum torque QL, and thrust lever arm torque QT . In this case only

the in-plane torque has a coefficient form, defined as:

CQ =
|Qd|

ρA(ωr)2r

Where as before ρ is the density of air, A is the rotor disc area, r is the rotor radius, and ω

is the rotor angular speed. Again, very similar, and very thorough expressions for this torque

coefficient can be found in in [1, p.115], [29, 30], and [26, p. 179-184], and again slightly shorter

in [27, p. 102] and [28, p. 84].

4.2.2.1 In-plane Drag and Induced Torque

CQ = CT (λ0 − µz) +
Cd0σ

8

(

1 +
7

3
µ2

)

Again, following the same assumptions as in Section 4.2.1.1:

CQ = CTλ0 +
Cd0σ

8

CQ = 2λ30 +
Cd0σ

8
⇐ CT = 2λ2
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Grouping terms:

|Qdi | = (2λ30 +
Cd0σ

8
)ρπr5ω2

i

Defining the constant Kd = (2λ30 +
Cd0σ

8 )ρπr5, following the vectors used here:

|Qdi | = ±Kdω
2
i (4.2.2.1)

The quantity ΓΩi is defined as a unit vector by right hand rule for each ωi in the body frame

of reference. So depending on the direction of ωi:

ΓΩi =













0

0

±1













(4.2.2.2)

So the drag torque of each rotor can be expressed using B, and QdBi defined:

Qdi = B(−Kdω
2
i ΓΩi)

Qb di
= −Kdω

2
i ΓΩi (4.2.2.3)

4.2.2.2 Change in Angular Momentum Torque

The angular velocity vector for each rotor can be defined generally using the scalar ωi, the unit

vector Γi which gives the direction of the angular velocity vector in the body frame following

the right-hand rule, and the body frame basis B.5

The angular momentum of each rotor can be defined:6

Li = J̃rB(ωiΓΩi)

The time derivative of this angular momentum vector gives the torque applied to each rotor.

Hence the torque applied from rotor to body is the negative of the time derivative:

QLi = −J̃rḂ(ωiΓΩi)− J̃rB(ω̇iΓΩi)

5To fully describe the detailed dynamics of each rotor (especially if large enough to flex and/or take account
of flapping), each would require its own reference frame and a much more complicated development. However,
assuming that the plane of rotation and center of rotaiton of each rotor are both absolutely fixed with respect
to B, a an expression using just B should be sufficient.

6Also, the rotor speed is assumed significantly large compared to any chassis angular velocity to ignore chassis
angular velocity in the angular momentum calculations.
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QLi = −J̃rB( Ωb × ωiΓΩi)− J̃rBω̇iΓΩi

Which can be written as body frame components:

Qb Li = −J̃r( Ωb × ωiΓΩi + ω̇iΓΩi) (4.2.2.4)

Where the component due to in plane angular acceleration is J̃r(ω̇iΓΩi) and the gyroscopic

term is: J̃r( Ωb × ωiΓΩi).

4.2.2.3 Force Lever Arm Torque

Since each rotor force acts on the body of the quadrotor at a distance from the center, each

causes a torque. The contribution of each can be expressed as the cross product of the radius

from the body frame origin with the force vector, i.e. the torque due to rotor force i is:

QFi = (Brhi)× Fri

QFi = B(rhi × ((KTω
2
i + δT ( v

b
o + Ωb × rhi)ωi)ΓTi −KHωiΓH( v

b
o + Ωb × rhi)))

Qb Fi = rhi × ( Tb i + Hb i) (4.2.2.5)

4.2.2.4 Total Rotor System Torque

The resulting total torque in the body frame of reference due to the rotors can be expressed

as:

Qb r =
4

∑

i=1

( Qb Fi + Qb di
+ Qb Li) (4.2.2.6)

Where Qb Fi
and Qb di

and Qb Li
are defined in Equation 4.2.2.5 and Equation 4.2.2.3 and

Equation 4.2.2.4 respectively. Expanding this expression gives:

Qb r =

4
∑

i=1

(rhi × ((KTω
2
i + δT ( v

b
o + Ωb × rhi)ωi)ΓTi) · · ·

+ rhi × (−KHωiΓH( v
b
o + Ωb × rhi)) · · ·

−Kdω
2
i ΓΩi − J̃r( Ωb × ωiΓΩi + ω̇iΓΩi))
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4.2.3 Rotor System Wrench

The total rotor system wrench is defined using Equation 4.2.1.7 and Equation 4.2.2.6 as:

Wb r =







Fb r

Qb r







4.2.4 BLDC Motors

The motors used with this quadrotor are three-phase brushless DC motors. Brushless DC

motors lack the mechanical commutation of brushed dc motors and hence require the input to

each phase to be energized by some external source over the correct timespan during rotation.

In order to accomplish this power-electronics many times referred to as ESCs (electronic speed

controllers)7 are utilized to implement the necessary inverter–battery DC to AC for each phase–

and commutator functionality. Some models of ESC use Hall effect sensors to obtain feedback

of the motor position, while others such as those used in this model known as sensorless models

use the back EMF in the motor leads to estimate position.

Complete modeling of the physics and several types of control of three-phase BLDC motors can

be found in [31]. As is implicit in the equations governing the dynamics of such motors ([31]) and

is confirmed in sources such as [8], BLDC motors of the type used here can be modeled similarly

to brushed DC motors. In what follows, the notation Ṽ is used to describe the effective input

voltage, i.e. that which is the result of the power-electronic motor control circuit for BLDCs

but is from a modeling equations standpoint equivalent to the same amplitude voltage applied

to the terminals of a brushed DC motor. A circuit diagram representing the model to be used

here is given in Figure 4.1.

Taking Ṽ as the effective input voltage, VR, VL, and VEMF as the resistor, inductor, and motor

back-emf voltages respectively, and using Kirchhoff’s voltage law:

Ṽ = VR + VL + VEMF

7The name may be somewhat deceptive as they many times do not provide any control in the sense of feedback
based speed reference tracking, e.g. the ESCs used in this model.
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Figure 4.1 Equivalent DC Motor Circuit

The resistor and inductor voltages can be expressed in terms of current using standard circuit

laws, and the back-emf in terms of rotor speed [31, 32, 33]:

VR = Rmi VL = Lm
di

dt
VEMF =

ω

KV

The effects of inductance can be ignored since for a typical modern DC motor of the type

modeled here, the value of Lm is exceptionally small and the transient mechanical response of

the motor is much slower than the electrical[32, 33, 2, 34]. Using this, the voltage equation can

be simplified to:

Ṽ = Rmi+
ω

KV

Since the gyroscopic torque effects in Equation 4.2.2.4 have no component along the body frame

z-axis bz, the equation for the angular acceleration of each rotor, and hence each motor8 can

be written in the form:

J̃rω̇ = Qm +Qf +Qd

Where Qf represents the internal friction of the motor, expressed here as:

Qf =
−if
KQ

Where if is the what is commonly known as the no-load current, or the current the motor

takes to simply rotate wihtout external torque applied. It is modeled as a constant here. A

8Assuming no gearbox in this situation.
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more detailed model of internal losses can be found for example in [33], and in various forms in

other sources. Qm represents the torque supplied by the motor as a function of current, with

KQ as the torque constnat of the motor, i.e. the ratio of current to torque:

Qm =
i

KQ

⇒ Qm =

((

Ṽ −
ω

KV

)

1

Rm
− if

)

1

KQ

And finally, Qd is the torque due to rotor drag as detailed in Section 4.2.2.1, taking the

form:

Qr = −Kdω
2

Substituting these quantities, the equation describing the dynamics of a given motor is ex-

pressed:

J̃rω̇i =

((

Ṽi −
ωi
KV

)

1

Rm
− if

)

1

KQ
−Kdω

2
i

4.2.5 Electronic Speed Controls

The input to each ESC is a PWM which drives power-electronics on the board to create

the effective voltages for each phase of the motor. Defining the input as a PWM duty cycle

percentatge Pi, it can be assumed that the effective voltage is proportional to the duty cycle

percentage above the turn-value P⊥ as a fraction of the maximum and the available battery

voltage, i.e.

Ṽi =
Pi − P⊥
P⊤ − P⊥

Vb

Where Vb is the available battery voltage and P⊤ is the maximum duty cycle percentage input9,

i.e. P⊤ − P⊥ represents the full range of duty cycle input, and is a constant for any given

calibration. This can be simplified notationally by defining u
Pi

as:

u
Pi

=
Pi − P⊥
P⊤ − P⊥

, upi ∈ [0, 1]∀i (4.2.5.1)

9The ESCs used in this model are flexible in that they can work with various PWM input schemes through a
calibration process where the maximum and minimum duty cycle are provided and the effective output is tuned
accordingly.
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4.2.6 ESC-Motor System

With this, the differential equation defining each motor/rotor velocity is expressed:

J̃rω̇i =
1

RmKQ
u
Pi
Vb −

1

RmKQKV
ωi −

1

KQ
if −Kdω

2
i

Assuming each motor has the same basic parameters and using the unsubscripted ω to represent

the vector of all rotor speeds and unsubscripted u
P
as the vector of all normalized inputs, the

state equation (with the rotor speeds as the state vector) for the ESC-Motor system can be

written:

ω̇ =
1

J̃rRmKQ

u
P
Vb −

1

J̃rRmKQKV

ω −
1

J̃rKQ

if [1]−
Kd

J̃r
(ω ◦ ω) (4.2.6.1)

Where the ◦ used here represents the Hadamard product, i.e.

ω ◦ ω =



















ω2
1

ω2
2

ω2
3

ω2
4



















The output equation, defining the ouput from the ESC-Motor System as M , is:

M(ω, u
P
, Vb) =







α

ω






(4.2.6.2)

Where the vector α represents the vector of rotor speed derivatives, i.e. α = ω̇.

4.2.6.1 ESC-Motor System Without Transient

For the purposes of contorl design (not for simulation testing purposes), since the motor dy-

namics are very fast in comparison to the rigid body dynamics, and in order to keep the state

vector used from being unnecessarily large, the motors can be assumed to achieve their com-

manded speed effectively instantaneously, i.e. with no transient. In order to express this, the

deritative term in Equation 4.2.4 is set to zero as though the steady state speed value has

already been reached, and the resulting quadratic equation is solved for ω:

ωi =
−1 +

√

1− 4RmKVKQKd(KV Rmif −KV upiVb)

2RmKVKQKd
(4.2.6.3)
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4.2.7 Battery

The battery is the sole power supply for the quadrotors motors and electronics. It provides

power to each of the motors through the ESCs, which themselves each contain a BEC (battery

eliminator circuit) to provide power to the on-board electronics, i.e. the GU-344 unit and

Receiver10. As is evident from the modeling presented in Section 4.2.6, the battery plays

an important role in the rotor speed dynamics and hence the dynamics of the entire vehicle.

Circuit runtime battery models and identification experiments can be found in literature, e.g.

[35, 36, 37] and online nonlinear estimation found in e.g. [38].

Since the motor currents (and hence power consumption) are not modeled (see Section 4.2.4)

and the motor dynamics have been assumed a function of the available battery voltage and

input commands only (Equation 4.2.6.1), no thorough battery modeling was done here. Un-

doubtedly a higher fidelity model could hypothetically be obtained if the motor currents and

power consumption were modeled accurately in combination with a good model of the battery

runtime characteristics and transient behavior. The increased complexity and difficulty of such

a task were seen as outweighing the modest improvements to the model it would make here.

For simulation purposes the battery was modeled as simply a decaying voltage (see Section

5.4), and for control design purposes as a static voltage between its maximum and minimum11

values.

The simulation discharge rate for the battery is represented using the parameter δV , while a

static operating voltage for contorl design12 for simulation initial conditions is represented by

V0. With these quantities defined, the battery voltage during any given flight was modeled as

following the equation:

Vb(t) = V0 + δV t (4.2.7.1)

10The receiver power is obtained from a connection to the GU-344, which is powered by the battery through
the BECs

11The vehicle will shut off automatically at a certain voltage level to protect the battery from damage.
12In order to avoid assume a time invariant system for desing purposes.
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4.3 Gravity

The effects of gravity are modeled here as resulting from a force following Newton’s universal

law of gravitation. Since all flight conditions being modeled are relatively close to the surface

of Earth, the inverse-square law formulation, Fg = G0
m1m2
r2 is replaced with a standard average

acceleration representing the acceleration effects of the inverse-square formulation near the

surface of the planet, given by the scalar g.

The inertial/Earth frame of reference for this model was defined such that the acceleration of

gravity would be along the positive z-axis. So using m as the mass of the quadrotor in flight,

the gravitational force G represented in intertial13 coordinates can be expressed:

G = E Ge where: Ge =













0

0

mg













4.3.1 Body Frame of Reference Gravitational Force

This model uses forces represented in the local, body frame of reference. The expression for the

force of gravity can be given in this frame using the change of coordinates matrices detailed in

Section 2.1.4 as:

G = E Ge = B Gb where: Gb = L←−be G
e (4.3.1.1)

Or expanded as:

Gb =













−mg sin(θ)

mg cos(θ) sin(ψ)

mg cos(θ) cos(ψ)













4.3.2 Body Frame of Reference Gravitational Torque

The equation of motion used to describe the dynamics of the system, i.e. Equation 2.2.5.1,

is with respect to the body frame of reference origin. The force of gravity always acts at the

13Again, see Appendix A for an explanation of treating a reference frame fixed with respect to Earth as inertial.
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center of mass. Therefore, if the origin of the body frame of reference is not coincident with

the physical center of mass, the force of gravity causes a torque due to the offset with respect

to the origin of the reference frame. This is expressed here with respect to the body frame of

reference as the torque due to gravity:

Qb G = rb oc × Gb (4.3.2.1)

4.4 Other Aerodynamic Effects

Aerodynamic effects due to things like fuselage and empennage drag[1, 29, 30] and wake de-

flection are also not taken into account. The formerly mentioned sources deal mainly with

conventional model helicopers with far more significant fuselage cross sectional area in the

xy-plane than the quadrotor being modeled here. Also a quadrotor has no tail and hence

empennage modeling is completely unnecessary.

In [29, 30] the in-plane rotor forces (Section 4.2.1.2) were lumped into expressions for fuselage

drag and wake deflection forces. In essense a sort of opposite approach is taken here, with

whatever forces do act directly on the cross sectional area of the fuselage lumped into expressions

for in-plane rotor drag (4.2.1.6) and/or velocity dependent thrust losses (i.e. the effects of δT

in 4.2.1.5).

Ground effect was also not taken into account in this model. As given in [1, 28] among others,

without significant forward velocity the effects of proximity to the ground or other surface can

be calculated as:

|TGE |

|T0|
=

1

1− ( r4h)
2

Where TGE and T0 represent the thrust produced with ground effect and without, r is the

rotor radius, and h is the height above the surface. The thrust increase due to ground effect

was therefore assumed to drop off significantly enough at even modest heights that it was not

included in the model14.

14The thrust increase according to this equation is only approximately 7% when a given rotor is above a
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4.5 GU-344

The GU-344 serves several purposes as part of the GAUI 330X system. The three main functions

it performs are as follows:

1. Body Frame Angular Velocity Feedback - On board 3-axis gyroscope sensor assumed

to provide the model equivalent of Ωb = [p q r]T .

2. Angular Velocity Tracking Control - Feedback control of the body frame angular

rates to track reference linearly related to the aileron, elevator, and rudder inputs.

3. Control Signal Mixing - Mix the throttle input and the results of the angular rate

tracking to produce signals to send to each motor ESC (see Section 4.2.6).

The assumed model of the GU-344 is shown in Figure 4.2 below:

Figure 4.2 Assumed GU-344 Model

surface a distance equal to its own radius and the radii of the rotors of the vehicle modeled here are only about
10cm. The vehicle used here as it is set up has rotors that are already beyond this height while landed. By the
time the rotors reached a 30cm height (only 1.3 times the vehicle chassis width), the thrust increase would be
under 1%. Near ground flight was not part of the intended flight conditions for the control developed here, so
ground effect was ignored.
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4.5.1 Gyroscope Feedback

The gyroscope feedback capability of the GU-344 is provided by three separate single axis

angular rate sensors with specifications given in [39]. The dynamics of the angular rate sensors

are fast enough relative to the rest of the system to be assumed effectively instantaneous and

the feedback is modeled a static gain matrix:

γg =



















[0](4×3)



















0 0 0

γp 0 0

0 γq 0

0 0 γr



















[0](4×6)



















Where γp, γq, and γr correspond to the gain from observed angular velocity to equivalent

integer command values. Defining the output of the gyroscop feedback ug as:

ug = kgγgΛ =



















0

kgγpp

kgγqq

kgγrr



















Where the gyroscope feedback gain kg is simply a scalar gain affecting the feedback magnitude,

which is set by a potentiometer on the hardware.

4.5.2 Tracking Control

The GU-344 tracking control subsystem is modeled as having a single state. This state is

defined as ι, and represents the accumulated value in the rudder channel proportional-integral

controller. Both the aileron and elevator channels are modeled as having proportional con-

trol, while the throttle channel has the equivalent of a proportional gain15. The control and

gain functionality are considered linear, and the state space matrices for the subsystem are

15The throttle channel has no feedback within the GU-344.
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defined:

Aκ = 0 Bκ =

[

0 0 0 1

]

Cκ =



















0

0

0

κ
RI



















Dκ =



















κ
T

0 0 0

0 κ
A

0 0

0 0 κ
E

0

0 0 0 κ
RP



















Where κ
T

is the gain from throttle input to output, κ
A
, κ

E
and κ

RP
are the proportional

gains corresponding to body frame angular rate tracking, and κRI is the integral gain of the

PI controller on the rudder channel. The input to the tracking control subsystem is us − ug

or us − kgγgΛ, i.e. the integer throttle input and equivalent integer angular rate tracking

errors.

4.5.3 Signal Mixer

The signal mixing functionality of the GU-344 is allows the more-intuitive-for-a-human-pilot

inputs of throttle, aileron, elevator, and rudder to form equivalent commands for each of the

four individual motor speed controllers16. This mixing is defined by the following matrix:

MG =



















1 −1 1 1

1 −1 −1 −1

1 1 −1 1

1 1 1 −1



















(4.5.3.1)

Where ±1 designates the either positive or negative effect each input has on each duty cycle

percentage command and hence each rotor speed. The elements of this matrix generally de-

pend on the assignment of the body frame axes with respect to the actual quadrotor, and the

numerical assignments given to each rotor. The assignments made in this model are explained

in Section 3.2.1.

16This mixing functionality is obviously not necessary under fully autonomous control scenarios where the
control could simply output the motor commands directly.
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The state equation and output equation, P , for the GU-344 are:

d

dt
ι = ι̇ = Aκι+Bκ(us − kgγgΛ) (4.5.3.2)

P (ι, us,Λ) =MGCκι+MGDκ(us − kgγgΛ) + P⊥[1] (4.5.3.3)

Or in expanded form:



















P1

P2
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P4


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












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RI
ι+ P⊥
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E
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4.6 Camera System Model

The camera system was modeled as a discrete system with sampling period Tc, providing

measurements of ro = [x y z]T and Θ = [φθψ]T with some latency τc. Defining the camera

system output as Yc:

Yc[n] =
























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x(n(Tc − τc))
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And for simulation purposes the camera system was also modeled as having some small white

noise added to all measurements.

4.7 Communication System Model

The communication system described in Section 3.5 is modeled as a latency and transfer func-

tion for each channel. The input to the communcation system from the Control PC is us0 and
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its output to the GU-344 unit is us
17. Defining the communication system latency for each

channel as τT , τA, τE, τR and the corresponding throttle, aileron, elevator, and rudder channel

transfer functions with no delay as GTx(s), GAx(s), GEx(s), and GRx(s) respectively:

us =



















e−τT sGTx(s) 0 0 0

0 e−τAsGAx(s) 0 0

0 0 e−τEsGEx(s) 0

0 0 0 e−τRsGRx(s)



















us0 (4.7.0.4)

17It should be pointed out that the s in the notation for these quantities is not the Laplace variable that it
represents in the transfer functions.
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CHAPTER 5. System Identification

5.1 Measurement Equipment and Software

Table 5.1: Equipment

Description Manufacturer Model Relevant Specifications1

Scale Dymo M10 0-4500g, 2g RES [40]

Photo Tachometer Extech 461859 5-99,999rpm, 1rpm RES [41]

Photo Tachometer Kleton K4010 5-99,999rpm, 1rpm RES [41]

BLDC Motor/Encoder ECE 220 16,000counts/rev [42]

Oscilloscope Tektronix DPO3034 4-Ch., 300MHz BW, DPO [43]

Oscilloscope HP 54600B 2-Ch., 100MHz BW, DSO [44]

Multimeter HP 34401A 6.5 digit RES [45]

Waveform Generator HP 33120A 15MHz BW, 12Bit RES [46]

Power Supply Kepco JQE 25-20 M 0-25V/0-20A

Power Supply Tektronix CPS250 0-20V/0-0.5A , 0-5V/0-2A [47]

IR Cameras (12) OptiTrack V100:R2 100FPS , 10ms latency[48]

IR Camera Hubs2 (2) OptiTrack OptiHub 2 USB2.0[48]

PC Microphone Realtek

PC-Transmitter FPGA Digilent Nexys 2

Transmitter/Receiver Spektrum DX6i/AR6200 24 GHz DSM2

1Only specifications relevant to the specific use(s) of the equipment here are given. For full specifications see
the equipment manuals and/or contact manufacturer.

2Along with all necessary USB cables and Sync Cable
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Table 5.2: Software

Description/Application Vendor/Author Version Operating System3

MATLAB/Simulink MathWorks R2012b 4 Windows 7

Tracking Tools OptiTRack 2.3.3 Windows 7

VRPN many (open source)5 7.29 Ubuntu 7.10

Audacity many (open source)6 1.2.6 Windows 7

ECP Executive GUI ECP 5.1 Windows XP

Command Line Control Interface Kyle Teske/Roy Lycke n/a Ubuntu 7.10

Graphical Control Interface Jeff Wick n/a Ubuntu 7.10

PC-Transmitter FPGA VHDL Dr. Phillip Jones n/a n/a

5.2 Rigid Body Dynamics Parameters

The parameters corresponding to the rigid body dynamics of the quadrotor are the mass m

and moment of inertia tensor J . The moment of inertia tensor is itself generally made up

of six parameters (see Section 2.2.6). It is assumed in this model however that only three of

these paraemters (Jxx, Jyy, Jzz), i.e. those corresponding to the principle axes of inertia, are

nominally non-zero.

5.2.1 Mass

The parameter m represents the nominal in-flight mass of the quadrotor in this model, i.e.

it represents the mass of the vehicle itself as well as the necessary battery. Represented as

symbols this means m = mq + mb with mq the vehicle mass and mb the battery mass. All

3Operating system specified may only represent that used here, not the only one that a given software is
capable of being run on.

4MATLAB versions R2011a, R2011b, R2012a, R2012b were all used over the course of this work, along with
the accompanying versions of Simulink and a number of toolboxes.

5At the time of this writing, information on authors and contributors could be found at:
http://www.cs.unc.edu/Research/vrpn/

6At the time of this writing, information on authors and contributors could be found at:
http://audacity.sourceforge.net/about/credits



www.manaraa.com

60

batteries used with the quadrotor modeled here were the same mass within ±2grams, which is

within the margin of error of hte equipment used for measurement. All masses were measured

using a digital scale (Dymo M10 [40]) and are, in kilograms:

mq = 0.456 mb = 0.200 ⇒ m = 0.656

5.2.2 Moment of Inertia Tensor

As detailed in Section 2.2.6, the nominal body frame axes were assumed to be through the

principle axes of the quadrotor, making the moment of inertia tensor for the system diagonal.

The moment of inertia for each axis was measured using a ECP 220 and accompanying Execu-

tive Software by attaching the vehicle to one of the disks and comparing the achieved angular

acceleration to that without the it attached.

That is, first the inertia of the disk and rig without quadrotor was established, then with the

quadrotor attached to rotate around each of its principle axes (nominally the body frame axes)

the inertia measurements were repeated and the difference between the observed inertia with

quadrotor and the inertia without quadrotor were taken as the inertia of the quadrotor about

that axis using the principle of superposition.

5.2.2.1 Theory

The ECP 220 is documented as producing a constant torque for open loop step trajectory

inputs based on input voltage. The calculations here use the constant 0.2NmV as provided in

[42]. Given an approximately uniform torque, an approximately uniform angular acceleration

is produced for a specified duration.7

Temporarily defining and using the variables α to represent the angular acceleration of the

disk+rig or disk+rig+quadrotor as attached for a given experiment, J to represtent the moment

7Here beyond the uniform torque assumption, all friction was assumed to be coulomb in nature and negligable
in magnitude. The disk/encoder used in the experiments was found to be very low friction so this assumption
was not terribly inaccurate.
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of inertia of the system in a given setup, and τ to represent the applied torque, since the rotation

in this experimental setup is confined to a single axis (i.e. the cross-product disappears):

τ = Jα

If the initial position was taken as zero (something that could be guaranteed through the

software) and the initial velocity zero, and expression for angular displacement (represented by

θ here) is the second antiderivative in time (t) of the constant acceleration:

θ =
1

2
αt2

Solving this for angular acceleration:

α =
2θ

t2

What was set in the software was a constant command voltage amplitude, which was given as

corresponding to a constant torque magnitude by the relationship τ = 1
5V [42]. Solving for J

in the preceeding equation for torque, and substituting:

J =
τ

α
=

1
5V
2θ
t2

=
V t2

10θ
(5.2.2.1)

5.2.2.2 Procedure

For these measurements, the belt connecting the largest disk at encoder 2 to the intermediate

disk and drive was removed, leaving only the belt to the disturbance motor connected. A rig

to mount the quadrotor to in appropriate positions for measurement was attached to the disk

at encoder 2. The settings in the Executive Software for all measurement runs were: The

Trajectory: Disturbance:

Open Loop Step Step Size (volts): 0.2V

Step Size (volts): 0.00V Dwell Time (msec): 10000

Dwell Time (msec): 10000 Number of reps: 1

Number of reps: 1

steps involved in each measurement set were identical:
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1. Ensure rig centered and (if being measured) quadrotor mounted with one of the three

principle axes (nominally the body frame axes) aligned with the axis of rotation of the

disk at encoder 2.8

2. Zero position of encoders.

3. Execute trajectory with disturbance included (the disturbance motor is used to drive the

disk in this setup).

4. Export raw data file.

5. Repeat several times.

6. In each data set find the time of the last sample where the input was active, and the

angular displacement at that time (taken in counts for these experiments) and if necessary

convert to radians.9

7. Use this data in Equation 5.2.2.1 to calculate a moment of inertia result.

8. Average the result from all runs in a given configuration to produce a final moment of

inertia.

5.2.2.3 Results

The results of the above procecure were, in units of kgm2, as follows:

Jxx = 8.1 × 10−3

Jyy = 7.4× 10−3

Jzz = 13.5× 10−3

5.3 ESC-Motor Parameters

The physical parametrs for the motors (GUEC GM-410 brushless DC motors) used in this

model were all obtained from the accompanying documentation. The assumed model for the

Electronic Speed Controllers (GUEC GE-010 10A BLDC ESCs) does not have fixed parameters,

8If the quadrotor was to be attached, a battery was included as well in flight position.
9The converstion for the model used was 16000 counts/revolution
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other than the turn-on-percentage P⊥, or minimum PWM duty cycle that will cause the ESC

to start turning the motor. The model parameter corresponding to the maximum PWM duty

cycle, P⊤ is variable depending on a given calibration.

The ESCs and motors used in this model were setup in the sensorless configuration, i.e. there

were no Hall-effect sensors or any other direct measurements of speed. The ESCs were assumed

to instead use back-EMF to estimate which phase to engergize when. As is apparent from the

assumed model (Seciton 4.2.6) the ESC-Motor pairs of this model do not explicitly track speed

as an input, but instead produce a speed that is a function of the given command, battery

state of charge, and any external torque.

The ESCs used here also include a BEC (battery eliminator circuit) in order to provide 5V

constant power to the GU-344 without necessitating a separate battery. This voltage was

observed as essentially constant regardless of battery fluctutations.

5.3.1 Motor Parameters

The relevant parameters for the motors used here are presented here. Some have been calculated

based off of the provided values in order to be in the correct units used here.

Symbol Nominal Value Units Brief Description

Rm 0.19 Ohms Motor Resistance

KV 110 rad/s/V Back-EMF Constant

KQ 110 Nm/A Torqe Constant

if 0.39 A No-Load (friction) Current

5.3.2 ESC Parameters

The turn-on duty cycle for the ESCs used here was determined to be 29%, i.e.

P⊥ = 0.29
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5.4 Battery Parameters

The battires used for flying the quadrotor in this model were Zippy 2100 35C series Lithium

Polymer batteries with a maximum open circuit voltage of approximately 12.5V. In order to

find a roughly approximate constant discharge rate to use for simulation purposes, a battery

was attached to the quadrotor such that the voltage its was supplying at any given time to each

of the motor controllers could be observed using a multimeter (in this case HP 34401A[45])

while being given an input to keep it approximately at a hovering condition. The obtained

discharge curve could then be fit with a line using least-squares optimization and the slope

used as a rough discharge rate. The discharge curve obtained and the linear fit are depicted in

Figure 5.1. The equation of the best fit line found for this data is:
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Figure 5.1 Example Battery Discharge Curve

Vb = 11.8663 − 0.0028t

Assigning the slope obtained as the discharge slope (Section 4.2.7), and assigning the closer-

to-mid-range voltage 11.4 as the static operating parameter:

δV = −0.0028
V

s
V0 = 11.4V
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5.5 Rotor Parameters

5.5.1 Thrust Constant

The thrust constant was obtained by giving a set of various throttle input commands, and

measuring each rotor speed using a optical tachometer and the thrust produced using a digital

scale. Since the vehicle was being held stationary during these tests the simple quadratic

approximation formula of Section 4.2.1.1 was accurate and the single lift constant KT could

be calculated. The experiments were performed on the quadrotor with all motors active (and

gyroscope feedback disabled) and setup inverted with the scale elevated from the floor to

minimize any ground effect.

5.5.1.1 Theory

Assuming all rotor speeds are measured along with the corresponding thrust produced, using

the results of Section 4.2.1.1 and using the index j for each set:

(ω2
1j + ω2

2j + ω2
3j + ω2

4j )KT = |Tj |

All these sets of data together form an overdetermined system and can be combined into a

matrix equaiton form:

AKT = T

Where:

A =













ω2
11 + ω2

21 + ω2
31 + ω2

41

ω2
12

+ ω2
22

+ ω2
32

+ ω2
42

...













and T =













|T1|

|T2|

...













With A and T defined in this way, the KT that minimizes the Euclidian norm of an assumed

zero mean measurement error vector (See Appendix B) can be found as:

KT = (ATA)−1ATT (5.5.1.1)
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5.5.1.2 Procedure

The first thing that must be done is to disable the gyroscope feedback in the GU-34410. Since

the sensors it contains for angular velocity have significant bias and cause the command given

to each motor to vary noticeably when the quadrotor is kept stationary, its feedback shold be

disabled in order to be able to obtain steady state rotor speed readings that correspond in

time to thrust readings. The procedure for disabling the gyroscope feedback is found in [25].

Essentially the green wire normally plugged into theGear channel of the receiver is disconnected

and the potentiometer on the GU-344 can be used to adjust the gyroscope feedback gain (in

this model this parameter is represented by kg, see Section 4.5) to essentially 0.

With this done, the quadrotor can be placed using some supports onto the scale (Dymo M10[40]

here) and provided with various throttle commands. The scale should of course be zeroed out

with the quadrotor and all other masses already in place. In this case the control software

was used in order to provide these inputs. For each input, all rotor speeds are measured using

the optical tachomter (in this case either Extech 461895 or Kleton K4010[41]). To facilitate

speed measurement, a thin strip of the IR reflective tape provided with the tachometers should

be attached to the side of the rotating motor housing, allowing for measurement without

mechanical interference. The data collection process is as follows:

1. Provide some throttle command to the quadrotor.

2. Using the optical tachometer, record the approximate steady state speed reached by each

motor/rotor.

3. Record the corresponding digital scale reading.

4. Repeat 1-3 with various inputs and record all data.

The tachometers used here produce readings in RPM, and the scale reads grams. The rotor

speeds must be converted to rad/s units using the converstion factor π
30

(rad)(min)
(rotation)(s) and the

grams reading to Newtons thrust by converting grams to kg and multipying by the acceleration

of gravity. With this done, Equation 5.5.1.1 can be used to produce a least squares estimate of

10Alternatively nearly identical experiments could be done generating PWM signals for each motor ESC
directly.
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the parameter KT . In order to get good coverage the throttle command input should be given

at a good number of points over the entire range from its minimum to its maximum value. In

this case it was varied over this full range 4 times as the battery drained in order to produce a

set of distinict rotor speeds and thrust data.

5.5.1.3 Results

The resulting thrust constant obtained by this process is 7.3956 × 10−6, i.e.

KT = 7.3956 × 10−6

5.5.2 Thrust Velocity Adjustment Factor

The thrust velocity adjustment factor, δT , was a result of comparing the thrust produced

using the quadratic approximate thrust (Equation 4.2.1.1) and in-plane drag torque (Equation

4.2.2.1) to the results of iteratively solving a system of more complex equations as described

at the start of Section 4.2.1.1. In order to do so various other rotor parameters involved in

the system of equations to be iteratively solved, which are otherwise lumped into KT and

Kd, were needed. All could either be obtained as common knowledge, measured, or indirectly

calculated from the values of KT and Kd experimentally obtained in Section 5.5.1 and Section

5.5.4 respectively.

The density of air used in the formulas was ρ = 1.2041 kg
m3 . The lift curve slope in the iterative

equations, a, following various sources putting this general parameter in the range of 5 to 7

(e.g. [4]) for most rotors was taken to be 6. The rotor solidity ratio σ could be approximated

using nothing more than a ruler and doing a few calculations based on measurements of the

rotors themselves, and the value determined was σ = 0.1147. The rotor radius was measured

as r = 0.1016m.

The parameter Cd0 used in the iterative in-plane drag equations was lumped into the parameter

Kd. Using the determined value of Kd (see Section 5.5.4) the calculated value for Cd0 is

0.7659. Using a similar process for the effetive constant collective pitch angle θ0, lumped into
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λ0 and hence the value of KT determined in Section 5.5.1, θ0 = 0.2999 radians (approximatley

17.18o).

Using these parameters the iterative and quadratic approximate calculations were compared

using repeated simulations of the two alternatives under various rotor speed and velocity condi-

tions. In Figure 5.2(a) the resulting thrust under conditions equivalent to the rotor hub having

a velocity11 of ±1ms normal to its plane of rotation, with rotor speed ranging from a nominal

hovering value ±100rads . Figure 5.2(b) shows the resulting differenct between the two methods

of obtaining thrust under the simulated conditions.
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Figure 5.2 Iterative vs. Quadratic Thrust with Z-Axis Velocity

Althought the two methods are exactly equivalent when the relative velocity is zero, there is

noticeable deviation when the velocity normal to the rotor plane is either positive or negative12

that is qualitatively reasonable from a momentum theory perspective. The same sort of simu-

lations were run for relative velocity within the rotor plane, with results shone in Figure 5.3(a)

and Figure 5.3(b). As is apparent from these results, with the parameters of this model, the

conditions simulated create little to no difference between the iterative and quadratic method

11More specifically, hub relative velocity to the air due to vehicle velocity, wind velocity, or any combination
of the two.

12Taking account of the fact that in this model a negative velocity of this type would correspond to a situation
like climbing.
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of calculating rotor thrust.

350 400 450 500 550 600

−1−0.500.51
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

 

Rotor Speed (rad/s)Body Frame XY−plane Velocity (m/s)

 

T
hr

us
t (

N
)

Aproximated
Iterative

(a) Iterative & Quadratic Thrust

350
400

450
500

550
600

−1
−0.5

0
0.5

1
−2

0

2

4

6

8

10

12

14

x 10
−3

Rotor Speed (rad/s)Body Frame XY−plane Velocity (m/s)

T
hr

us
t (

N
)

(b) Iterative-Quadratic Difference

Figure 5.3 Iterative vs. Quadratic Thrust with XY-plane Velocity

Next the same process was followed for the in-plane drag torque. The results of simulating the

same range rotor speed and relative velocity normal to the rotor plane as with thrust are shown

in Figure 5.4(a). Again in this case, looking at Figure 5.4(b), with the model parameters as

they are and under simulated conditions there is little to no difference between the iterative

and quadratic approximation method of calculating rotor torque. Finally the process was
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repeated for in-plane drag torque under the range of rotor speed and in-plane velocity conditions

simulated for thrust. The results are shown in Figure 5.5(a) and 5.5(b). Again for the model

parameters and conditions simulated no appreciable difference was found between the iterative

and closed form approximate methods of calculation. Although for in-plane velocity there was

350 400 450 500 550 600

−1
−0.5

0
0.5

1

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

 

Rotor Speed (rad/s)Body Frame XY−plane Velocity (m/s)

 

T
or

qu
e 

(N
m

)

Aproximated
Iterative

(a) Iterative & Quadratic Thrust

350
400

450
500

550
600

−1
−0.5

0
0.5

1
−2

0

2

4

6

8

10

12

x 10
−5

Rotor Speed (rad/s)Body Frame XY−plane Velocity (m/s)

T
or

qu
e 

(N
m

)

(b) Iterative-Quadratic Difference

Figure 5.5 Iterative vs. Quadratic Torque with XY-plane Velocity

no significant effect on either thrust or torque at various rotor speeds, and no real difference in

torque with velocity normal to the rotor plane, Figure 5.2(b) does show a noticeable deviation

between the two methods of calculation. It was desireable to take some account of these effects

that are normally neglected in the simple quadratic equation for thrust while still keeping a

relatively simple closed form solution, i.e. avoiding using a system of equations needing iterative

solution. As mentioned in section 4.2.1.1 and defined in Equation 4.2.1.3, this was accomplished

by introducing an adjustment factor that works off of the product of the local z-axis relative

air velocity and rotor speed.

As with other parameter fittings, a least-squares process was employed here in order to obtain

the best13 adjustment factor value. This was done using the assumed equation (Equation

4.2.1.3) form and defining the result depicted in Figure 5.2(b) for each rotor speed and velocity

13See Appendix B.
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(indexed using j) as:

∆Tj = δTzωjvhjz

Forming this system of equations into the vectors:

[ωvz] =













ωj=1vh(j=1)z

ωj=2vh(j=2)z

...













[∆T ] =













∆Tj=1

∆Tj=2

...













With these quantities, the optimal least-squares adjustment factor is:

δTz = ([ωvz ]
T [ωvz])

−1[ωvz]
T [∆T ] (5.5.2.1)

The value obtained using this equation and the simulation data and parameters14 here was:

δTz = 2.351 × 10−4 (5.5.2.2)

Using this result, the adjusted closed form equation for rotor thrust (Equation 4.2.1.3) were

compared to those obtained by iterative solution, and the reults displayed. As can be seen

from the reults in Figure 5.6(a) and Fiture 5.6(b), the adjustment factor found here eliminates

the deviation between the iterative and quadratic only calculations observed in Figure 5.2(b).

This shows the improvement that can be made to the predictive capabilities of the thrust

equation by a thrust adjustment factor. However, since the value in Equation 5.5.2.2 is based

off of parameters that are themselves only known approximately, i.e. a0, θ0, and σ, the value

obtained is itself only guaranteed to be near the correct value. Taking this into account, and

given some small iterations to the value while comparing the resulting model predictions to

experimental data, an updated value was obtaineed:

δTz = 1.176 × 10−4

14It is worth emphasizing that the results here dealing with the magnitude of effects (or lack thereof) created
by in-plane velocity and normal velocity at various rotor speeds are all parameter and model dependant ! That
is, for another model with different rotors or other operating conditions, the same type of reults may or may
not hold. The operating conditions and specific parameters for a given model have to be taken into account
on a case-by-case basis in order to determine what complexity of calculations are sufficient. It can certainly
be argued however that generally speaking, some sort of adjustment for relative air velocity and rotor speed to
the typical constant-times-rotor-speed-squared equation will yield more accurate results. It is the magnitude of
such effects that will vary on a case-by-case basis. And of course for some more extreme operating conditions or
highly detailed large scale models, simple closed form solution of any type may be completely inadequate.
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Figure 5.6 Iterative vs. Quadratic + Adjustment Thrust with Z-Axis Velocity

The improvement to a simulated height step response given by this δT is shown in Figure

5.7.

5.5.3 H-Force Constant

The in-plane rotor drag constant, KH , defined in Section 4.2.1.2 was determined iteratively

by comparing experimental trajectoris resulting from step inputs to the lateral and logitudinal

reference channels of the initial PID closed loop (Section 6.1) with the predictions of nonlinear

simulation. Best resutls were obtained using a value of 3.4574 × 10−4, that is:

KH = 3.4574 × 10−4

5.5.4 Drag Constant

Using a DC power supply and function generator to provide input to one of the brushless motor

ESCs, and separate power supply as a substitute for the battery, various inputs were given to

the subsystem at various equivalent battery voltages. The steady state speed that the motor

with rotor reached was measured using an optical tachometer, which combined with the motor
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parameters of 5.3 allowed the in-plane drag and induced torque constant Kd (defined in Section

4.2.2.1) to be calculated.

5.5.4.1 Theory

Assuming a steady state speed has been reached, Equation 4.2.6.1 for a single rotor be-

comes:

0 =
1

RmKQ
u
P
Vb −

1

RmKQKV
ω −

1

KQ
if −Kdω

2

Using the motor parameters Rm, KQ, KV , and if as provided and the behvaior of the ESC

and battery (see Section 5.3 and Section 4.2.6) along with the recorded inputs and measured

speeds, this equation consists of known quantities and the unknown quantity Kd. That is if

each input PWM and voltage, as well as each output rotor speed are indexed using j, then for

the jth instance:

(ω2
j )Kd =

upjVbj
RmKQ

−
ωj

RmKQKV
−

if
KQ
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The set of all these equations defines an overdetermined system, and can be combined into a

matrix equation with:

A =













ω2
j=1

ω2
j=2

...













, b =













upj=1Vbj=1

RmKQ
−

ωj=1

RmKQKV
−

if
KQ

upj=2Vbj=2

RmKQ
−

ωj=2

RmKQKV
−

if
KQ

...













With these quantities defined, the overdetermined system can be expressed as:

AKd = b

So the Kd which minimizes the Euclidian norm of some assumed zero mean measurement error

(See Appendix B) can be found using the pseudoinverse of the matrix A, i.e. using the previous

definitions of A and b in relation to Kd:

Kd = (ATA)−1AT b (5.5.4.1)

Which in this case can also be expressed:

Kd =

∑

∀j ω
2
j (
upj Vbj
RmKQ

−
ωj

RmKQKV
−

if
KQ

)
∑

∀j
ω4
j

(5.5.4.2)

5.5.4.2 Procedure

The PWM input to the ESC is produced using a DC power supply (in this case Tektronix

CPS250[47]) hooked up in series with a waveform generator (in this case HP 33120A [46]). In

order to match the output of the GU-344 (ses Section 5.6), the output signal from this series

connection must match a PWM within the range 0V to 3.2V, with a total period of 3.6ms and

duty cycle range from 29%. To accomplish this the power supply and function generater are

set as follows:

Tektronix CPS250: HP 33120A:

Voltage: 1.6V Amplitude: 1.6V

Frequency: 280Hz

Duty Cycle: 28% →

The function generator will allow the duty cycle to be adjusted in 1% intervals, and will cause

the motor to turn on at 29%. In order to mimick the battery used for flight, which can have a
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terminal voltage within the approximate range of 10V to 12V depending on the state of charge,

a high current power supply (in this case Kepco JQE 25-20 M) is hooked up to the power input

of the ESC.

Before any data can be taken, the ESC should be calibrated! The maximum and minimum PWM

duty cycle both define the normalized command output of the ESC defined in Equation 4.2.5.1.

The maximum duty cycle is established with a given calibration. The process for calibrating

the ESCs used in this model is given in [25, 49]. The following adjusts this procedure to the

experimental setup/equipment used in this process:

1. Adjust the high-current power supply to an appropriate voltage such as 11V (since the

Kepco JQE 25-20 M has an analog voltage meter, it may be a good idea to have a

digital multimeter e.g. in this case HP 34401A [45] in parallel with the supply), and after

turning it off connect the supply to the power input of the ESC using appropriate wires

and connectors.

2. Connect the low-current power supply and waveform/function generator so as to mimick

the PWM duty cycle, and adjust the duty cycle input to what will serve as the maximum

percentage to allow the ESC to enter calibration mode when powered on. In the caes of

the experiements run here 45% was used.

3. Power the ESC by turning on the high-current power supply and ensure that the ESC

enters calibration mode by listening for the appropriate tones as indicated in [25, 49].15

If calibration mode is not entered something has gone wrong and the process must be

restarted, possibly with a higher starting duty cycle percentage.

4. Wait for the tone indicating set all to default and quickly decrease the PWM duty cycle

percentage back to the turn off value (28%) to take that setting.

Once this calibration process has been done correctly the data can be collected. In order to do

so, the output variable of motor/rotor speed must be measured. This was accomplished here

using a optical tachometer (in this case either Extech 461895 or Kleton K4010). A thin strip

of the IR reflective tape provided with the tachometers was attached to the side of the rotating

15Also, by observing that the rotors do not begin spinning at near full speed!
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motor housing, allowing for the speed to be measured without mechanical interference.

The data collection process is as follows:

1. Set the high-current power supply to a given voltage setting and record the value.

2. Set the PWM duty cycle percentage to some value within the acceptable range and record

the value.

3. Using the optical tachometer, record the approximate steady state speed reached by the

motor.

4. Repeat 1-3 with various inputs and record all data.

The tachometers used here produce readings in RPM. Convering this data to rad/s units,

Equation 5.5.4.1 or equivalently Equation 5.5.4.2 can be used to produce a least squares estimate

of the parameter Kd. In order to get good coverage of the in-flight operational range the duty

cycle percentage was adjusted several times from the minimum value to the calibrated maximum

value in increments of 1% with equivalent battery voltage inputs at 10V, 11V and 12V.

5.5.4.3 Results

The resulting drag constant obtained by this process is 5.194 × 10−7, i.e.

Kd = 5.194 × 10−7

5.5.5 Equivalent Moment of Inertia

The equivalent moment of inertia of the rotating components (in this case the motor rod,

upper motor housing, and rotor) affects the acceleration of the rotor/motor, i.e. the transient

response to a given speed command. Due to this, the steady state measurements available

using the digital tachometers could not provide any useful data to identify this quantity. No

direct method of measuring speed as a function of time was available. A similar situation was

encountered in [29, 30], where it was dealt with using time-spectral analysis of sound recordings

of the response to a speed command step input to give a measure of transient response.
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A similar approach is taken here. The main difference being that where [29, 30] used Morlet

wavelet transform to perform their time-frequency analysis a short-time Fourier transform

approach was used here to obtain equivalent results.

5.5.5.1 Theory

The dynamics of the motor/rotor are described by Equation 4.2.4. Due to the relatively small

magnitude of the if and Kd constants, the shape of the transient response will be dominated

by the first two terms on the right hand side of this equation. Using this the approximate

response of the system can be treated as linear and a transfer function can be obtained using

Laplace transform. Expressing this in terms of the complex variable s:

ω(s) ≈
KV

RmKVKQJ̃rs+ 1
(5.5.5.1)

5.5.5.2 Procedure

The procedure for collecting the necessary data to approximate the motor transient is straight-

forward.

1. Disable the gyroscope feedback as in e.g. Section 5.5.1.

2. Setup the quadrotor so that it cannot lift off or is inverted such that its thrust directs it

into a rigid surface without damage.

3. Using the command-line control software issue some small magnitude throttle command

keeping all other channels neutral.

4. Setup the recording device (in this case a laptop with microphone and Audacity 1.2.6) to

record at a high sampling rate (in this case 96000Hz).

5. Using the command-line control software issue some step increase throttle command.

6. Analyze the data using MATLAB and the FFT algorithm to produce a spectrogram plot

showing the approximate transient response of the rotor speed.
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(b) Rotor Noise Spectrogram: Transient Magnified

Figure 5.8 Time-Frequency Motor Analysis

5.5.5.3 Results

It can be seen in Figure 5.8(b) that the settling time of the motor transient response is ap-

proximately 0.1s, which indicates a first-order system time constant of approximately 0.0333s.

Using this, Equation 5.5.5.1, substituting in all other constants and solving for J̃r:

J̃r = 1.376 × 10−5

5.6 GU-344 Parameters

5.6.1 Input/Output

The GU-344 has four PWM outputs, each with a period of 3.6ms. The minimum duty cycle

that can be produced on each is 28%, or equivalently 1ms measuring from brown to orange,

with a peak-to-peak amplitude of 3.2V.

5.6.2 Gyroscope Feedback Gains

The GU-344 providing angular velocity feeback meant that the aileron, elevator, and rudder

inputs were effectively references for the body frame angular velocity elements. The quadrotor

with active gyroscope feedback was given various magnitude inputs on these channels and
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the steady state velocity was observed for each. This data was then used to calculate the

approximate feedback gains for each angular velocity. As with the body moment of inertia

elements, the measurements here were performed using the ECP 220 and Executive Software

to record the encoder data.

5.6.2.1 Theory

Using the ECP 220 to accurately obtain (as mentioned elsewhere the encoders of the ECP 220

had a resultion of 16000counts/revolution[42]) the angular position of the quadrotor fixed to

one of its disks over some timespan, the average speed over that timespan could be calculated as

the change in angular position over the total change in time. Temporarily using the variables Ω̄

and ∆θ to represent the average angular speed and total angular displacement over the interval

∆t:

Ω̄ =
∆θ

∆t

A block diagram of the experimental setup is shown in Figure 5.9:

Figure 5.9 Gyroscope Feedback Parameterization Experimental Setup

Rigidly fixing the quadrotor to one of the disks, i.e. confining it to rotate around single axis,

the cross-product term of the rigid body dynamics disappears. Using this the system can

be assumed to behave in an effectively linear manner. Treating the systems of Figure 5.9 as

effectively continuous and linear, and assuming the Laplace transform of the disk+quadrotor

is Q(s), and that of the tracking controller for a given channel is K(s), the speed can be
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represented as:

Ω̄(s) =
Q(s)K(s)

1 +Q(s)K(s)γ
u(s)

Using the final value theorem, i.e. for some time domain function f(t) and its corresponding

laplace transform F (s):

lim
t→∞

f(t) = s lim
s→0

F (s)

Giving a step input command of some constant magnitude ū making u(s) = ū
s , using the fact

that Q(s) will involve integral action, and the fact that K(s) will be proportional and integral

or just proportional:

lim
s→0

1

Q(s)K(s)
= 0

⇒ lim
t→∞

Ω̄(t) = s lim
s→0

Q(s)K(s)

1 +Q(s)K(s)γ
u(s) =

ū
1

Q(s)K(s) + γ
=

1

γ
ū

So allowing enough time for the speed to effectively settle out, and averaging that steady-state

value over some time interval, the feedback gain for whichever channel is being activated–

corresponding to whichever axis of the quadrotor is setup to rotate on the disk–is calculated

as:

γ =
ū

Ω̄

Repeating the process several times for each axis, and averaging the results, the expression for

the feedback gain on a given channel using j to index each of m trails is:

γ =
1

m

m
∑

j=1

ūj
Ω̄j

(5.6.2.1)

5.6.2.2 Procedure

The procedure for taking the necessary data to calculate the gyroscope feedback gains is

straightforward. No special settings are necessary in the ECP 220 Executive Software other

than to set up data aquisition for displacement on whichever disk the quadrotor is to be at-

tached to using the same rig as with the moment of inertia experiments. The ECP 220 and

rig can simply be set up the same as in those experiments as well (Section 5.2.2.2). With this

setup:
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1. Use the command-line version of the control software is used to provide some magnitude

step input to the correct channel for the current setup.

2. Give the quadrotor and disk system a moment to settle out to an approximately steady

state speed.

3. Activate the Executive Software to begin recording the position for some time interval.

4. Export the data obtained and record the magnitude step input given with it.

5. Repeat several times use Equation 5.6.2.1 to determine an approximate feedback gain for

that channel.

5.6.2.3 Results

The results obtained using the the process previously outlined were as follows:

γp = 330.44

γq = 330.44

γr = 192.68

5.6.3 Throttle, Aileron, and Elevator Channel Proportional Gain Elements

5.6.3.1 Theory

For any given set of throttle, aileron, and elevator inputs, uT , uA and uE respectively, keeping

the rudder input uR at its neutral value, a set of four duty cycle percentage outputs will

be generated. Indexing each of these using the varible j allows the equations defining the
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relationships among each set of inputs and each output to be written:

uTjκT − uAjκA + uEjκE + P̃⊥ = P1j

uTjκT − uAjκA − uEjκE + P̃⊥ = P2j

uTjκT + uAjκA − uEjκE + P̃⊥ = P3j

uTjκT + uAjκA + uEjκE + P̃⊥ = P4j

Together these sets of data form an overdetermined system of equations. The input and output

elements can be formed into vectors for j = 1, 2, · · · These vectors, are defined:

[uT ] =













uTj=1

uTj=2

...













[uA] =













uAj=1

uAj=2

...













[uE ] =













uEj=1

uEj=2

...













[P1] =













P1j=1

P1j=2

...













[P2] =













P2j=1

P2j=2

...













[P3] =













P3j=1

P3j=2

...













[P4] =













P4j=1

P4j=2

...













Which can be combined into the matrix equation:



















[uT ] −[uA] [uE ] [1]

[uT ] −[uA] −[uE] [1]

[uT ] [uA] −[uE] [1]

[uT ] [uA] [uE ] [1]





































κT

κA

κE

P̃⊥



















=



















[P1]

[P2]

[P3]

[P4]



















In order to compact the notation, defining:

AG =



















[uT ] −[uA] [uE ] [1]

[uT ] −[uA] −[uE ] [1]

[uT ] [uA] −[uE ] [1]

[uT ] [uA] [uE ] [1]



















xG =



















κT

κA

κE

P⊥



















bG =



















[P1]

[P2]

[P3]

[P4]



















The vector of parameters xG =

[

κT κA κE P⊥

]T

that minimizes the Euclidian norm of an

assumed zero mean measurement error (See Appendix B) is found using the pseudoinverse of
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the matrix AG and the vector bG just defined:

xG = (ATGAG)
−1ATGbG (5.6.3.1)

5.6.3.2 Procedure

As in Section 5.5.1.2, the first thing that must be done is to disable the gyroscope feedback

in the GU-344 since the sensors it contains for angular velocity have significant bias and cause

the PWM commands given to vary significantly even when the quadrotor is kept stationary. In

order to be able to obtain useful readings of how each input affects each duty cycle output this

feedback needs to be disabled. The procedure for disabling the gyroscope feedback is found

in [25]. Essentially the green wire normally plugged into the Gear channel of the receiver

is disconnected and the potentiometer on the GU-344 can be used to adjust the gyroscope

feedback gain (in this model this parameter is represented by kg, see Section 4.5) to essentially

0.

Next all ESCs are disconnected from the GU344 and using appropriate adaptors along with

scope probes, each GU-344 output is connected to an oscilloscope input (in this case the 4-

channel Tektronix DPO3034[43]). At this point at least one of the adaptors16 needs to be

connected through to an ESC in order for the GU-344 to receive power (each ESC has a BEC

individually capable of providing enough power to the GU-344 unit). The corresponding motor

should be disconnected or have the rotor removed.

Either a normal in-flight battery or appropriate power supply can be used to give power to the

quadrotor through the normal input, and using the command-line base software (Table 5.2)

provided with various integer command sets keeping the rudder channel at neutral. In this

case each of the throttle, aileron, and elevator inptus was varied over its full range separately,

keeping the throttle input near its middle value while changing the other channel inputs in order

to avoid saturation issues. The set of collected data is reformed into the appropriate vectors

16The adaptors mentoned here are made such that one end plugs into an GU-344 output and another end into
an ESC input, with exposed sections along the middle of each wire for attaching measurement equipment like
oscilloscope probes.
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and matrices as described in Section 5.6.3.1 and Equation 5.6.3.1 can be used to produce

least-squares estimates of the throttle, aileron, and elevator channel gains.

5.6.3.3 Results

The results of collecting and anlyzing the data as previously described were that:

κT = 1.99 × 10−4

κA = 4.3× 10−5

κE = 4.3 × 10−5

P̃⊥ = 0.33

These results combined with those of Section 5.6.2 were tested by observing the transient

response with the quadrotor attached to the ECP 220 as in Section 5.6.2 and later in Section

5.8.2. In Section 5.8.2 it is shown that the response to a step reference change give through

the trainer port of the Dx6i transmitter differs from that given without it. In order to verify

the parameters obtaine so far, the response to step inputs of different magnitude given without

using the trainer port is compared to that predicted by the nonlinear simulation model, which

was made to mimick being fixed to the encoder disk by having all velocity derivatives arbitrarily

set to zero.

The resulting responses in Figure 5.10 were normalized for plotting comparison purposes, and

a good match between the exerpimental data and simulation prediction was verified. The

response for both the simulation and experimental response follow a similar curve and settle

out in about 0.3s after the inital reference change.

5.6.4 Rudder Channel Gain Elements

The corresponding gains for the GU-344 rudder channel, κRP and κRI could not be obtained

using the steady state observations that were sufficient for the throttle, aileron, and elevator
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Figure 5.10 Pitch/Roll Rate Step Response: Experiment vs. Simulation

gain elements due to the dynamics of the integrator. With the quadrotor stationary, soon as

any non-neutral input was given on the rudder channel, all four outputs of the GU-344 were

pushed affected in such a way that they would never settle out, unless given enough time to

completely saturate.17

To attempt to determine these parameters, while the quadrotor was stationary (meaning any

angular velocity command would creat only error at the input to the channel control gains)

the initial value taken to various magnitude step inputs was observed and taken to correspond

to the proportional component of the PI gains, i.e κRP . The integrator constant was first

approximated roughly by taking the time for the outputs to saturate given varoius input com-

mands and using the slope as an approximate value. The rough estimate was then iteratively

refined by comparing experimental yaw trajectoris resulting from step inputs to the rudder

reference channel of the initial PID closed loop (Section 6.1) with the predictions of nonlinear

simulation.

The results obtained by these processes for the rudder channel gains were:

κRP = 4.3× 10−5 κRI = 1.6× 10−4

17Actually due to the presense of at least some small amount gyroscope drift feedback at all times (even with
the potentiometer set to disable this feedback), the rudder channel integrator was probably always having some
small unknown effect on all outputs that may have degraded the fit somewhat for the other channel gains.
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5.7 Camera System Parameters

Parameters for the camera system, i.e. the cameras and all accompanying hardware are avail-

able from multiple sources including the hardware specifications available online and in the

user’s manual[48]. Those that were relevant to the modeling done here are given below.

5.7.1 Sampling Rate

The VR:100 cameras have a maximum frame rate of 100FPS which was the setting that each

was used with for the experiments performed here. In symbolic terms, given as the period:

Tc = 0.01s

5.7.2 Latency

The latency of the camera system given here is the latency listed in the VR:100 technical

specifications of 10ms plus 5ms to serve as an upper bound on the average latency given by

Tracking Tools software during operation.

τc = 0.015s

5.8 Communication System Identificaiton and Parameters

5.8.1 Communication Latency

The communication system latency for the throttle channel, τT was approximated by iter-

atively increaseing the simulated latency until the early response to a step command more

closely matched that present in experimental data. This process is illustrated for a height step

command in Figure 5.11.

The value that provided adequate similarity to the experimental data was:

τT = 0.15s
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Figure 5.11 Various Communication System Latency Trials

A similar process was used to determine the other channel latencies, and the obtained approx-

imate values are given below:

τA = 0.15s τE = 0.15s τR = 0.15s

5.8.2 Channel Transfer Characteristics

Ideally the channel transfer elements of Equation 4.7.0.4, GTx(s), GAx(s), GEx(s), and GRx(s)

would all be unity gain. This was approximately18 the case for the throttle and rudder channels.

Unfortunately however, due to an unknown problem in the system, this was not at all the case

for the aileron or elevator channels when the trainer port (i.e. the way the FPGA sent signals

from the control PC to the transmitter) of the Dx6i transmitter was used.

The abnormal behavior was observed19 by provding the quadrotor with step input commands

using the command-line based control software and recording the transient angular velocity

18Approximately because there would of course be some frequency response chracteristics e.g. finite bandwidth
not modeled here.

19The problem was first qualitatively observed during the experiments to obtain the gyroscope feedback gains
in Section 5.6.2. Luckily those paramters corresponded to steady state gains and their determination was not
prevented by the behavior being described here.
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response using the ECP 220 and Executive Software (Table 5.1). Essentially the setup was

identical to that described in Section 5.6.2 with the difference in this case being that the

transient response is sought rather than steady state amplitude. Figure 5.12 illustrates the

observed response using the trainer port:
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Figure 5.12 Aileron/Elevator Response through Trainer Port

What made this response odd, other than the obvious fact that it has a tremendous amount

of overshoot and sluggish settling time, is that if the system was given a similar step input

manually using the transmitter without the trainer port plugged in, the behavior disappeard.

This is shown in Figure 5.13.

One potential difference between the manual and command-line control step inputs was speed.

The command-line software produced its step over the interval of 0.5ms, while the manual

input was likely not as fast. To look into the possibility that manually snapping the control

stick up or down as quickly as possible was essentially just not fast enough i.e. lacking the

bandwidth to excite the behavior for whatever reason, another transmitter was hooked up to

the trainer port and a step input manually given again except through the trainer port. The
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Figure 5.13 Aileron/Elevator Response without Trainer Port

abnormal, extreme overshoot, behavior occurred again with this setup, indicating that it was in

fact some unknown issue with the communication through the trainer port of the Dx6i causing

the change.

The output of the FPGA to the trainer port was observed using an oscillocope during trials

to see if there was some abnormal behavior due to the FPGA (since the observed transient

was slow enough to visually observe in the vehicle it would be slow enough to observe in the

duty cycle percentage) but nothing abnormal was seen. This coupled with the fact that manual

input was able to reproduce the behavior when using the trainer port adds even more indication

that it is, however it may be, where the problem is caused (or at least a necessary element in

the process of creating it).

The response of these two channels using the trainer port was therefore modeled as a non-unity

transfer function. Observing on average approximately 275% overshoot and a peaking time of

approximately 0.4 seconds, and starting from a form of third order transfer function similar to

some found in [50], the following model for the resulting angular veloctiy system response was

found to match the oberved behaviore reasonably well:

18.3s2 + 159.2s + 102.5

1s3 + 14s2 + 50.25s + 102.5
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The pole at s = −10 corresponding to a first order response with a time constant of 0.1s

matches the approximate settling time of the angular rate without the transmitter issue, i.e.

about 0.3s. Hence the aileron and elevator channel transfer function was taken as the unity

gain remainder with the first order portion–begin attributed to the vehicle physical dynamics

in series–removed:

GAx(s) = GEx(s) =
1.8304s2 + 15.9241s + 10.25

1s2 + 4s+ 10.25

Both the system respose and resulting modeled communication response are shown
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Figure 5.14 Aileron/Elevator Channel Modeled Transfer Function Step Response

The response of the transfer function for the aileron and elevator channels to a unit step input

is depicted in Figure 5.14. It can be seen to compare very well to those of Figure 5.12 (the axis

scaling matches the third sub-plot of that figure best).

5.9 Collective Results

Table 5.3: Open Loop Numerical Parameters

Symbol Nominal Value Units Brief Description

mq 0.456 kg quadrotor mass

mb 0.200 kg battery mass

m 0.656 kg quadrotor+battery mass

Continued on next page...
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Table 5.3 –Continued from previous page.

Symbol Nominal Value Units Brief Description

g 9.81 m/s2 acceleration of gravity

Jxx 8.1 × 10−3 kgm2 quadrotor+battery moment of inertia around bx

Jyy 7.4 × 10−3 kgm2 quadrotor+battery moment of inertia around by

Jzz 13.5 × 10−3 kgm2 quadrotor+battery moment of inertia around bz

Jreq 1.376 × 10−5 kgm2 rotor+motor m.o.i. around motor axis of rotation

KT 7.2803 × 10−6 Kgm
rad2

rotor thrust constant

KH 3.4574 × 10−4 kg
rad rotor in-plane drag constant

Kd 5.1994 × 10−7 kgm2

rad2 rotor drag constant

δTz 1.176 × 10−4 kg
rad rotor velocity thrust adjustment factor

J̃r 1.376 × 10−5 kgm2 rotor drag constant

|rhx | 0.115 m x-axis distance from center of mass to a rotor hub

|rhy | 0.115 m y-axis distance from center of mass to a rotor hub

|rhz | 0.04 m z-axis distance from center of mass to a rotor hub

Rm 0.19 Ω motor resistance

KQ 110 A
Nm motor torque constant

KV 110 rad
V s motor back-emf constant

if 0.39 A motor internal friction current

P⊥ 0.29 (none) ESC turn-on duty cycle command

P̃⊥ 0.3277 (none) minimum GU-344 output duty cycle command

P⊤ 0.55 (none) maximum GU-344 output duty cycle command

δV −0.002 V/s approximate constant battery discharge rate

kg 1 (none) gyroscope gain

γp 330.44 s gyroscope rad/s-to-integer feedback gain on p

γq 330.44 s gyroscope rad/s-to-integer feedback gain on q

γr 192.68 s gyroscope rad/s-to-integer feedback gain on r

κT 1.99 × 10−2 (none) throttle channel proportional gain

Continued on next page...
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Table 5.3 –Continued from previous page.

Symbol Nominal Value Units Brief Description

κA 4.3 × 10−3 (none) aileron channel tracking proportional constant

κE 4.3 × 10−3 (none) elevator channel tracking proportional constant

κRP 4.3 × 10−3 (none) rudder channel tracking proportional constant

κRI 5.33 × 10−4 (none) rudder channel rate tracking integral constant

P̃⊥ 0.3277 (none) minimum active duty cycle command output

Tc 0.01 s camera system sampling period

τc 0.015 s camera system total latency

τT 0.15 s communication throttle channel latency

τA 0.15 s communication aileron channel latency

τE 0.15 s communication elevator channel latency

τR 0.15 s communication rudder channel latency
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CHAPTER 6. Nested-Loop PID Control

6.1 Initial Stabilizing Design

Proportional-integral-derivative (PID) control–or some variant–is almost certainly the most

common type of linear control design utilized. The action of each term in a PID is fairly

intuitive, and PID control also has the advantage of being able to be effectively tuned for

performance in many cases without a detailed (or sometimes any) plant model. Various man-

ual tuning methodologies and heuristics exist such as the ZieglerNichols method, as well as

various software implementations allowing for automatic tuning given a linear plant model

and some design constraints (e.g. the pidtool functionality of MATLAB and related Simulink

blocks).

The nested loop PID control architecture used here, depicted in Figure 6.1, was designed while

working in cooperation with the MicroCART 2012 senior design team.

At the time of the intial control experiments, the nonlinear model was not complete and all

parameters not yet determined. Because of this, the model development was completed in

parallel with the PID type control design. An iterative design approach was adopted where

initial control was designed based on the existing model–however complete at a given time–and

the observations and data obtained used to produce improvements to the model, which could

then be used for further control design.

This approach was beneficial in this case. Both the control design and modeling processes

were mutually aided at various stages. For example, initial modeling errors in the description

of in-plane drag were exposed and fixed using experimental data obtained from early control
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Figure 6.1 Nested Loop PID Architecture

experiments. In the opposite direciton, at on point a significant bug with a portion of the control

software was discovered with the aid of the model. Various controller errors were simulated and

the resulting predicted degradation in behavior was compared to the actutal behavior, with

one of the closest determined possible sources being the actual problem.

The control gains for each channel were obtained over time in cooperation with the MicorCART

team, using a mixture of experimental trials with manual tuning and simulation based design

and redesign. The control software was designed to allow a mixture of manual and autonomous

control. One or more input channels could be placed under autonomous control while the

others remained under the control of a human pilot.

6.2 Heading Control

Yaw or heading control was the first to be designed in order to maintain a steady–initially always

zero–heading. The modeling with respect to the yawing dynamics was essentially complete
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during by the time of initial PID design. Based on the model linearized at hover, and testing

with the nonlinear simulation, the control gains in Equation 6.2.0.1 were obtained and did not

require subsequent manual tuning.

KPψ = 408 KDψ = 19.6 τfψ = 0.468 (6.2.0.1)

Where KPψ is the proportional gain, KDψ is the derivative gain, and τfψ is the equivalent first

order low-pass filter time constant applied to the derivative input. The results of this control

are shown in Figure 6.2.
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Figure 6.2 PID Heading Step Commands

The experimental response to a yaw/heading reference change follows the simulation prediction

well. The simulation predicts a somewhat slower response with slightly less overshoot. One
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potential source of this discrepancy is the fact that at times, due to some time varrying bias

in the GU-344 unit output, the assumed neutral rudder input produced a non-zero yawing

velocity. The results were however deemed satisfactory.

6.3 Position Control

The architecture takes advantage of the fact that in order to create accelerations in the lateral

or longitudinal directions the quadrotor must first change orientation, i.e. it must tip the entire

fuselage towards the desired direction of linear motion. This allowed the resulting control loops

for the aileron and elevator channels to be designed in two stages. The roll and pitch orientation

control was designed first, followed by the lateral and longitudinal control.

6.3.1 Orientation Control

Due to the existing gyroscope feedback of the GU-344, the aileron, elevator, and rudder inputs

to the open loop system act effectively as angular rate references. With the addition of a

first layer of control for the orientation angles along with the previously designed yaw/heading

control, these inputs are given by a angular control layer with angle reference inputs.

For the orientation control an initial estimate proportional value was determined based on

the at-the-time-existing model and tuned based on trial and observation. It was found that

proportional only control yielded adequate results1:

KProll = 251

Where KPφ is the roll control proportional gain.

KPpitch = 251

Where KPθ is the pitch control proportional gain.

1This is entirely due to the existing gyroscope angular rate feedback. Without this feedback the system from
input to roll and pitch output would act effectively as a double integrator in series with other dynamcs, which
is a system that cannot be stabilized by only proportional control.
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6.3.2 Lateral and Longitudinal Control

Following the nested-loop architecture, the control for the lateral and longitudinal positions was

in the form of a closed loop around each of the existing orientation controls. The subsequent

design of these controls was predominantly experimental, producing the following proportional-

derivative control:

KPx = 0.39 KDx = 0.05 τfx = 0.01

KPy = 0.39 KDy = 0.05 τfy = 0.01

The results of these gains are shown in Figure 6.3 and Figure 6.4.
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Figure 6.3 PID Lateral Step Commands
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Figure 6.4 PID Longitudinal Step Commands

The response to a lateral and longitudinal reference step inputs was good, though it deviated

somewhat more significantly from the simulation predictions than the heading control. The

initial response is a good match but the simulation predicts a sharper peak after the initial

overshoot in both cases. This is most likely due to the communication system effects described

in Section 5.8.2, which were isolated to the aileron and elevator channels, and hence would only

affect the lateral and longitudinal response.

Though the observed behavior was given an approximate linear model, the collected data (Fig-

ure 5.12) shows some indication of nonlinearity, i.e. varrying amplitude overshoot depending

on input magnitude. Also, only isolated angular rate step response tests were used to obtain

the approximate model. It is quite possible the model used to describe the communication
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behavior on these channels was not adequate to capture the behavior during more complicated

in-flight maneuvers.

The accuracy with which the simulation model follows the physical response of the system to

angular velocity step commands in Figure 5.10, i.e. when the trainer port communications

could be avoided, would seem to indicate that whatever unmodeled dynamics cause this mis-

match are not part of the physical dynamics of the vehicle, but rather some other portion

of the system. Further testing, e.g. substitution of another communication system, would

be necessary to firmly establish whether or not the aileron/elevator isssue is the cause of the

model/experimental mismatch observed.

6.3.3 Height Control

Height control was designed based primarily on the model available at the time of PID design,

which though it was not yet complete still yielded a resulting controller with adequate perfor-

mance without any subsequent manual tuning.2 The PID gains used for height control are as

follows:

KPz = −44.076 KIz = 0.7777 KDz = −139.3324 τfz = 0.2368

Where KPz is the proportional gain, KIz is the integrator gain, KDz is the derivative gain,

and finally τfz is the time constant of a first order low pass filter applied to the error seen by

the derivative term. The results of this controller are shown in Figure 6.5.

The results of the height control simulation are nearly identical to the experimental results

obtained using the previously described height controller. This gives further confirmation to the

accuracy of the nonlinear physical dynamical model since the throttle channel was unaffected by

any communication issues other than the determined latency (Figure 5.11). Notice the accuracy

of the response depicted in Figure 6.5 is dependent upon not only the accurate determination of

the typical constant-times-rotor-speed-squared parameter (KT , see Sections 4.2.1.1 and 5.5.1),

2The linearized model used, whether complete or not, is unable to take into account the continuual loss of
battery charge and hence manually increasing the integrator gain would help guarantee consistent height control
over longer flights.
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Figure 6.5 PID Height Step Commands

but also the thrust velocity adjustment factor δT (Section 5.5.2). The resulting less accurate

model prediction without this adjustment is shown in Figure 5.7.
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6.4 Pseudo-Nonlinear Extension

In order to allow the system to operate over a continuum of yaw angles, the position errors

given to the control system were adjusted so as to account for the current vehicle heading. In

order to allow the linear controllers that had been designed to operate at a yaw angle, ψ = 0,

to function effectively at non-zero angles, the errors in inertial frame of reference position were

multiplied by a change of coordinates matrix to project them onto the local body frame axes

of the vehicle. That is, the errors given to the controller are:
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
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
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
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(6.4.0.1)

Where xe, ye and ze are the intertial frame of reference errors based on the current vehicle

position and user reference commands, and of course ψ is the yaw/heading angle.

In this way, when the yaw angle of the vehicle is changed, the controller effectively works as

though the qaudrotor still has zero yaw, and what has happend is the reference position has been

rotated by a given angel equal to the non-zero ψ. In a sense this is fooling the linear controller

to behave in a semi-nonlinear way, hence calling it a pseudo-nonlinear extension.

With such an adjustment the quadrotor was able to hover at any desired heading, as well as

execute various trajectories at various non-zero angles. Although the performance when at at

angles other than 0 was slightly degraded, any sort of performance at all at large angles away

from 0 would have been completely impossible with the static linear system.
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CHAPTER 7. LQR Control

Linear quadratic optimal control is a method of control design that seeks to minimize a

quadratic cost function of the system states and inputs with the constraint that the system

dynamics are governed–at least locally–by a system of linear differential equations, i.e. a linear

state space model. Unlike the case of PID control where the controller gains are chosen directly

and not necessarily based on a model, LQ design uses a cost function chosen by the designer

which is minimized subject to the dynamics of a specific system model.

Optimal control design in general always presents potential difficulties in that the designer

must choose some objective or objectives to optimize based on an available model. Because

of this the control that results, though optimal in the sense of the model and chosen criteria,

may suffer in actual performance if the model used or the chosen optimization criteria is not

adequate with respect to the real system. Linear Quadratic Regulator (LQR) design–in which

a set of matrices is chosen to weight the system states and inputs in a cost to be minimized

subject to the modeled system dynamics–is no exception.

7.1 LQR Weight Selection

As part of LQR design, the weight matrices must be chosen such that the resulting optimal

control gains produce desirable closed loop system performance that is feasable taking into

account the real-world system’s capabilities and dynamics. In many cases this is accomplished

by selecting diagonal matrices to weight both the states and inputs, checking the perfomance

of the resulting control (either in simulation or through experimentation if possible), and itera-

tively adjusting the weight terms and redesigning the controller to improve performance based
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on the observed results e.g. [3].

One of the advantages of selecting diagonal weight matrices is that it effectively means each

state element and each input element is weighted individually. This makes it easier for the

designer to have some intuition about how any given value in a weighting matrix will affect the

optimizaton process and the resulting control. Heuristics exist for selecting the initial weighting

elements such as Bryson’s rule in [8, 11] or similar methods focusing on acutator saturation as

in [9].

Another slightly more subtle advantage associated with selecting diagonal weighting matrices

is that in order to guarantee the cost function is convex, which is necessary for the optimization

problem to be well posed, the designer only needs to ensure that each element in the diagonal

state weighting matrix is nonnegative and each element in the diagonal input weight is positive.

This will guarantee the state weighting matrix is positive semidefinite, and that the input

weighting matrix is positive definite, making the resulting cost convex1.

The main potential disadvantage of the diagonal weights approach is directly related to the

first advantage. In forming the cost by taking the sum of positively weighted individual states

and inputs, the formation of the weight matrices can be simplified, but this to a large extent

destroys the ability of the cost function to take into account coupling or interactions between

different states, between different inputs, or between inptus and states.

The quadrotor system of this thesis has multiple states and inputs corresponding to potentially

conflicting degrees of freedom. Due to the physics of the system in order to produce lateral or

longitudinal acceleration the orientation much be changed first. This means that the rotaional

and linear degrees of freedom themselves are interdependent. For example regulation to the

origin in the form of correcting errors in the linear states requires manipulation of the angular

states away from the origin. These sort of issues were brought up in [3] in relation to nested-

loop PID vs. single loop LQR control (designed using the typical diagonal weight structure

cost function) architectures.

1These positive semidefinite/definite conditions are required of deterministic systems, not stochastic systems
e.g. [51, 52]
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It is desirable to be able to easily form cost matrices with more complicated structure (i.e. not

necessarily diagonal) in order to account for interaction among states and among inputs, and

also to weight the state/input interactions. For most systems this, especially the input/state

weighting matrix, would be very difficult to select on an element-by-element basis as with

the digaonal matrix approach and maintain cost convexity. For this reason some systematic

procedure is necessery to form a better cost function while maintaining convexity.

In what follows, similar LQR design issues to those described in [3] are encountered, and a

systematic procedure for forming the cost function taking into account the specific structure

and dynamical constraints of the quadrotor system is presented, and used to produce superior

results to those obtained using the more typical approach.

7.2 Linear Open Loop Model for LQR Design

It was desirable to keep the model used for state feedback control design simple while capturing

the dynamics enough to facilitate adequate results. In other words, to use the smallest set

of states that would yield good resulting control, since the inclusion of states that are very

difficult to obtain accurately or affect would only serve to add complexity and uncertainty to

the resulting system, thereby reducing robustness. The linear model used for the design of the

Linear Quadratic Regulator state feedback was simplified in order to remove states that could

not be observed by any available means, could not easily be estimated, and met one or both of

the following criteria:

• Could not be regulated or had no need of regulation.

• Had only a transient, and/or relatively small effect on the important system dynamics.

The resulting simplified linear model did not have states for the rotor speeds. There was

no means available in the system used to measure the motor/rotor speeds during flight, and

estimation would have been extremely difficult due to the large operating range and dependence

on time varrying unknowns such as battery voltage. The motor dynamics were also relatively
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fast relative to those of the vehicle motion. For these reasons Equation 4.2.6.3 was used to

eliminate the rotor speed states before linearization.

The state representing the accumulation of the integrator on the rudder channel of the GU-344

(Equation 4.5.3.2) also had absolutely no means of measurement available. Though estimation

would probably not have been tremendously difficult, the yaw dynamics of the system were

relatively well behaved, and furhter it was not desirable or very feasable to regulate the value

of this state to a reference value since it would potentially conflict with overall yaw/heading

regulation.

The model for the aileron and elevator channel communication system transfer behivor of Sec-

tions 4.7 and 5.8.2 involved several states. Again these states could not be measured by any

available means, and since the model given to the behavior was a very rough linear approxima-

tion, estimation during flight would not have been very feasable. Beyond this there would have

been no way to directly affect its state values. Though not an ideal situation, for the purposes

of state feedback control design the communication system states were ignored.

With these states removed, the linear model used to design the control gains lost some level of

accuracty. Due to this, any subsequent control obtained based on the simplified linear model

was tested in full-complexity nonlinear simulation (i.e. including the communication behavior,

rudder integration and motor dynamics) to help ensure some adequate level of performance

before any implementation. This was done based on the previously obtained results using PID

control and other model verification experiments that indicated a fairly strong match between

simulation predictions and implemented results2.

The resulting simplified nonlinear open loop system, like the full complexity version, had an

equilibrium point at Λ = 0, corresponding to hovering3. It was linearized at this equilibrium

to produce the linear state space model:

d

dt
Λ = AΛ+Bν

2With the only somewhat significant exception being the lateral/longitudinal transient behavior affected by
the communications issue (Section 6.3.2).

3Actually it has a continuum of equilibrium points where all velocity states and the pitch and roll are zero,
with the linear position and yaw angle free to take any value.
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Where ν = us − ūs, with ūs being the equilibrium input. It is not necessary to define a new

state since the equilibrium state for this circumstance is the origin. The A and B matrices

with numcerical parameters subsituted are as follows:
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7.2.1 Subsystem Decomposition

The resulting linear system of Section 7.2 can be formed into four independent subsystems.

These four subsystems will be termed the longitudinal, lateral, altitude, and direction subsys-

tems. This necessitates defining the decoupled equivalent state vector, Λ̃ as:
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Where each of the components of the equivalent state vector represents the states corresponding

to that subsystem:

Λlon =



















u

x

q

θ



















Λlat =



















v

y

p

φ



















Λalt =







w

z






Λdir =







r

ψ







So the equivalent open loop linear system can be written:

d

dt
Λ̃ = ÃΛ̃ + B̃ν

With the equivalent block diagonal matrices Ã and B̃ as:
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Substituting the system parameters, the subsystem matrices take the following forms:
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7.3 Initital LQR Design

Here the initial attempts to design a LQR controller, following a commonly encoutnered

method, are described.

7.3.1 Common Form LQR Design

Linear quadratic regulation is by no means a novel method of control applied to quadrotor

helicopters. It has been done in for example [8, 3, 7, 9, 10, 11, 12]. In all cases the design was

performed using the common cost function form:

J =

∞
∫

0

xTQx+ uTRu dt (7.3.1.1)

Or the equivalent for the discrete case:

J =

∞
∑

n=0

xTQx+ uTRu (7.3.1.2)
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With Q and R diagonal, and positive semidefinite and definite respectively. This was the form

of cost function used in the initial LQR designs used in this thesis. The A and B matrices of

Section 7.2 were used along with diagonal weighting matrices chosen using methodology similar

to [8, 11].

The structure of the weights used was as follows:

Q =











































































1
û2

0 0 0 0 0 0 0 0 0 0 0

0 1
v̂2

0 0 0 0 0 0 0 0 0 0

0 0 1
ŵ2 0 0 0 0 0 0 0 0 0

0 0 0 1
p̂2 0 0 0 0 0 0 0 0

0 0 0 0 1
q̂2 0 0 0 0 0 0 0

0 0 0 0 0 1
r̂2

0 0 0 0 0 0

0 0 0 0 0 0 1
x̂2

0 0 0 0 0

0 0 0 0 0 0 0 1
ŷ2

0 0 0 0

0 0 0 0 0 0 0 0 1
ẑ2

0 0 0

0 0 0 0 0 0 0 0 0 1
φ̂2

0 0

0 0 0 0 0 0 0 0 0 0 1
θ̂2

0

0 0 0 0 0 0 0 0 0 0 0 1
ψ̂2











































































R =





















1
û2
T

0 0 0

0 1
û2
A

0 0

0 0 1
û2
E

0

0 0 0 1
û2
R





















Where each hat state and input value corresponds to a maximum desireable amplitude relative

to the other states and inputs respectively, to be iteratively adjusted based on acheived results

until a satisfactory design is acheived.

Following this process for the quadrotor system here, a large nubmer of weight magnitude

combinations were chosen in an attempt to design a satisfactory LQR feedback matrix. One

example would be setting all the velocity states maximum amplitude to as well as the pitch

and roll angles to unity, the x and y weights to 1√
0.1

and the weights for z and ψ to 1√
0.01

,

the throttle amplitude 50, aileron and elevator to 5 and rudder to 10. These gains produced

a stable control loop, but one very lacking performance in x and y tracking, taking 10 or

more seconds to track step command on either reference in simulation and faring even worse

in implementation due to an inability to reject disturbances.
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The state feedback gain matrix resulting from these example weights was:

K =



















0 0 −165.75 0 0 0 0 0 −487.54 0 0 0

0 9.49 0 12.61 0 0 0 40.95 0 267.98 0 0

−9.49 0 0 0 11.5 0 −40.95 0 0 0 267.06 0

0 0 0 0 0 17.38 0 0 0 0 0 99.8



















The problem essentially boiled down to the fact that the gains on the x and y states (ap-

proximately 41 in this case) were simply not large enough to provide adequate tracking and

disturbance rejection, and with all the combinations of diagonal state and input weight mag-

nitudes tried (e.g. increasing the weights on x and y while decreasing those on the angles and

or rates etc...), any that produced gains for x and y that were high enough4 to accomplish

regulation on those variables produced gains for φ and θ in a range high enough (in the 600s)

to drive the real system unstable.

The same type of problem had been encountered and mentioned in [3], where a nested-loop PID

control architecture similar to that used here was compared to a single loop LQR architecture

and the LQR performance was found lacking due to conflict amog the degrees of freedom that

it was attempting to simultaneously regulate as opposed to the nested loop architecture where

the linear and angular degrees of freedom are in sequence. In [3] an attempt was made to use

the nested-loop idea with LQR design but it did not meet with much success. Here a different

means of dealing with the issue is proposed, taking the conflicing degrees of freedom and inputs

directly into account when forming the cost function.

7.4 Improved LQR Design

7.4.1 H2 Control

LQR control can be veiwed as a special case of H2 optimal control[53]. In order to do so,

defining the output quantity ζ as:

ζ = Cx+Du

4It is hypothetically possible that the set of diagonal weights that was just right to produce desirable control
gains was not found even with all the iterations tried, but even in that case the difficult and impractical nature
of such a searching process is reason enough to seek out a better method.
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A cost function can be formed (given in the discrete case here):

J =

∞
∑

n=0

ζT ζ

Where:

ζT ζ = (Cx+Du)T (Cx+Du) = xTCTCx+ xTCTDu+ uTDTCx+ uTDTDu

If the output matrices C and D are chosen such that:

C =







Q
1
2

[0]






and D =







[0]

R
1
2







Where Q
1
2 and R

1
2 are the square roots of the positive semidefinite weighting matrices5 in the

typical LQR cost function, then CTD = 0 and DTC = 0, hence:

J =
∞
∑

n=0

xTQx+ uTRu

The key here is recognizing that the matrices C and D were chosen to have orthogonal columns

arbitrarily. There is no reason why this has to be the case. The C and D matrices can be

chosen to represent linear combinations of inputs and states, including those that may have

conflit during regulation, in ways that allow the states and inputs to diverge from the origin

under appropriate conditions. For example, if one state takes on a non-zero value, and another

state and a corresponding input must take a non-zero values in order to allow the system to

correct itself, the matrices can be set up so that the cost function reflects the weighted difference

of these quantities in a way that they cancel eachother appropriately.

Noting that xTCTDu = uTDTCx⇒ xTCTDu+uTDTCx = 2xTCTDu, the more general form

of cost function is then:

J =

∞
∑

n=0

xTCTCx+ 2xTCTDu+ uTDTDu (7.4.1.1)

Which has elements corresponding to the MATLAB lqrd command, where using the syntax of

that functions documentation Q = CTC, N = CTD, and R = DTD.

5Q and R being positive semidefinite guarantees the existence of a square root for each[53]
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7.4.2 Design Accounting for Degree of Freedom Conflict

The use of the form of cost function involving non-orthogonal columns in the output matrices

is illustrated in what follows for the lateral and logitudinal subsystems described in Section

7.2.1.

7.4.2.1 Lateral Subsystem

The lateral subsystem’s state equation matrices and input and state vector:

Alat =



















−0.991 0 −0.03964 9.81

1 0 0 0

−3.211 0 −22.67 0

0 0 1 0



















Blat =



















0

0

0.06048

0



















νA Λlat =



















v

y

p

φ



















The output function for the lateral subsystem needs to be defined such that it takes account of

the conflicting input and degrees of freedom. Using the fact that y is positive to the right, and

φ is negative banking to the left and hence the away from equilibrium aileron input νA would be

negative to correct for this lateral error, noting that the same relationships hold for the rates,

the output function for this subsystem is defined as:

ζlat = clatΛlat + dAνA

ζlat =

[

cv cy cp cφ

]



















v

y

p

φ



















+ dAνA

Where the sign on all the terms is kept positive in this case to reflect the fact that it is desirable

that if the lateral posision is in error the aileron and roll input be allowed to be negative and

still keep the cost minimal, and vice-verca.

The values that would end up producing good results in this case were:

clat =

[

1
2

1
0.6

1
25

1
0.25

]

dA =
1

60
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7.4.2.2 Longitudinal Subsystem

The longitudinal subsystem’s state equation matrices and input and state vector:

Alon =



















−0.991 0 0.03964 −9.81

1 0 0 0

3.514 0 −22.81 0

0 0 1 0



















Blon =



















0

0

0.0662

0



















νE Λlon =



















u

x

q

θ



















The same reasoning was applied to the longitudinal subsystem as the lateral subsystem. The

only difference being that in the case of the longitudinal system, the pitch angle and corre-

sponding elevator input need to be positive to correct for positive longitudinal position error

and vice-verca. Hence the output matrices for is system were:

clon =

[

1
2

1
0.6

−1
25

−1
0.25

]

dA =
−1

60

7.4.2.3 Altitude Subsystem

The altitude systems variables were:

Aalt =







−0.6739 0

1 0






Balt =







−0.03005

0






νT Λalt =







w

z







The linear altitude subsystem did not have the kind of degree of freedom conflict that the lateral

and longitudinal subsystems had, therefore its output matrices could take on the orthogonal

form:

calt =













1 0

0 100

0 0













dT =













0

0

1
50












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7.4.2.4 Direction Subsystem

The direction systems variables were:

Adir =







−5.616 0

1 0






Bdir =







0.02253

0






νR Λdir =







r

ψ







As with the linear altitude system the linear direction system did not have degree of freedom

issues so its output matrices were chosen similarly:

cdir =













1 0

0 100

0 0













dR =













0

0

1
50













Forming each of the output equations into the corresponding cost matrices:

Qalt = cTaltcalt Ralt = dTaltdlat Nalt = cTaltdalt

Qlat = cTlatclat Rlat = dTlatdlat Nlat = cTaltdlat

Qlon = cTlonclon Rlon = dTlondlon Nlon = cTaltdlon

Qlat = cTlatclat Rlat = dTlatdlat Ndir = cTaltddir

And combining the results into block diagonal matrices:

Q =



















Qalt [0] [0] [0]

[0] Qlat [0] [0]

[0] [0] Qlon [0]

[0] [0] [0] Qdir



















R =



















Ralt [0] [0] [0]

[0] Rlat [0] [0]

[0] [0] Rlon [0]

[0] [0] [0] Rdir



















N =



















Nalt [0] [0] [0]

[0] Nlat [0] [0]

[0] [0] Nlon [0]

[0] [0] [0] Ndir


















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Which turn out to be in numerical form for the design here:

Q =











































































1 0 0 0 0 0 0 0 0 0 0 0

0 10 0 0 0 0 0 0 0 0 0 0

0 0 0.25 0.8333 0.02 2 0 0 0 0 0 0

0 0 0.8333 2.7778 0.0667 6.6667 0 0 0 0 0 0

0 0 0.2 0.0667 0.0016 0.16 0 0 0 0 0 0

0 0 2 6.6667 0.16 16 0 0 0 0 0 0

0 0 0 0 0 0 0.25 0.83 −0.02 −2 0 0

0 0 0 0 0 0 0.8333 2.7778 −0.0667 −6.667 0 0

0 0 0 0 0 0 −0.02 −0.0667 0.0016 0.16 0 0

0 0 0 0 0 0 −2 −6.6667 0.16 16 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 10











































































R =



















4× 10−4 0 0 0

0 2.778 × 10−4 0 0

0 0 2.778 × 10−4 0

0 0 0 4× 10−4


















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N =











































































0 0 0 0

0 0 0 0

0 0.0083 0 0

0 0.0278 0 0

0 0.0007 0 0

0 0.0667 0 0

0 0 −0.0083 0

0 0 −0.0278 0

0 0 0.0007 0

0 0 0.0667 0

0 0 0 0

0 0 0 0











































































With the resulting controller, with columns rearranged to work with the original Λ:

K =



















0 0 −93.03 0 0 0 0 0 −155.9 0 0 0

0 30.28 0 3.28 0 0 0 99.91 0 241.27 0 0

−30.27 0 0 0 3.26 0 −99.9 0 0 0 241.25 0

0 0 0 0 0 31.02 0 0 0 0 0 157.56



















It is clear that, in relation to the previous controller given, the magnitude of the terms

multiplying the x and y errors have increased by a factor of approximately 150% while keeping

those multiplying the orientation angles similar in magnitude, which turned out to be exactly

the needed effect.

7.4.2.5 Pseudo-Nonlinear Extension

The same change of coordinates applied to the lateral and longitudinal errors applied to the

PID controls in Section 6.4 was applied to the errors receieved by the LQR gain matrix.
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7.4.3 Results

The results of implementation of the LQR state feedback matrix previously designed are shown

in what follows: The resulting yaw/heading reference step response of the LQR control in
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Figure 7.1 LQR Heading Step Commands

Figure 7.1 shows good, though not perfect, matching between the simulation prediciton and

experimental data. Though the response is somwhat slower than that of the PID, yaw tracking

speed was not really a design goal. The resulting control was seen as adequate.

The response to both lateral and longitudinal reference step changes with the LQR in Figures

7.2 and 7.3, both achieved similar performance to those of the PID controls. The results



www.manaraa.com

118

0 5 10 15
−1

0

1

2

A
m

pl
itu

de
 (

m
)

Experimental Results

0 5 10 15
−1

0

1

2

A
m

pl
itu

de
 (

m
)

Simulation Results

0 5 10 15
−1

0

1

2

A
m

pl
itu

de
 (

m
)

Experimental vs. Simulation

Time (s)

 

 
Simulation
Experimental

Figure 7.2 LQR Lateral Step Commands

obtained with the LQR are actually slightly better than those of the PID, with approximately

10cm less overshoot on average with an equal or slightly better settling time.

The transient mismatch seen in both responses is very similar to that of the corresponding PID

responses, confirming that the source was likely not some controller design or implementation

issue as it causes a nearly identical effect with two independent controllers.
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Figure 7.3 LQR Longitudinal Step Commands
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Figure 7.4 LQR Height Step Commands

The response of the LQR control to height reference changes in Figure 7.4 is very good, with

approximately 10cm less overshoot on average than the corresponding PID behavior and an

approximately equivalent settling interval. As was the case with the PID height tracking, the

simulation model and experimental results are nearly identical.
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CHAPTER 8. Conclusion

8.1 Summary

In this work, a complete, thorough nonlinear model of a quadrotor helicopter vehicle including

on board electronics and an accompanying network control system was developed. The goal

to develop complete, accurate and independent symbolic models for each component and each

subsystem successively describing the system as a whole, while avoiding unnecessary model

complication was accomplished. A general 6DOF rigid body development was provided allowing

for analysis from points of reference other than the vehicle center of mass. Symbolic models

for each subsystem and component were developed that allow for easy introduction of various

parameters, description and analysis of parametric uncertainty, and easy inclusion or exclusion

of various levels of dynamics description and accuracy using parameter values.

Model parameters were identified using systematic and as far as possible repeatable procedures

and calculations. The resulting numerical nonlinear model and simulation yielded results suf-

ficient to design model based optimal control without any need for subsequent manual tuning.

The model has highly accurate predictive capabilities for the physical dynamics of the system

such as response to angular rate reference changes, thrust and torque produced by rotors, and

closed loop responses to height and heading commands. The model predictions for the lateral

and longitudinal closed loop responses suffered due to the presence of unknown dynamics in a

portion of the communication system, but were still reasonably accurate and adequate enough

to produce the previously mentioned working control.

Finally, a systematic procedure for obtaining improved results with Linear Quadratic optimal

control taking into account the physical nature of the system–specifically degree of freedom
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conflict–was presented and used to successfully produce single-loop state feedback control with

equivalent or better performance to a nested-loop PID scheme and superior performance to

LQ control designed using more typical methods. Each control was also accompanied by a

straight forward, effectively implemented method for extending their performance to arbitrary

headings.

8.2 Further Work

The model presented should lend itself very well to various forms of robust control analysis and

design involving numerous types of parametric uncertainty, as well as the design and testing

of real-time system identification algorithms and general adaptive control schemes. The very

rarely presented, and even more rarely developed 6DOF dynamics equations expressed with

respect to a point of reference generally different from the rigid body center of mass, along with

fairly straight forward application of the multidimensional version of the parallel axis theorem

should allow specifically for the representation of a vehicle with unknown mass and inertia

characteristics. The symbolic description of such uncertainty, whether inherent in the vehicle

model, due to uncertain attached loads, or both, should allow for subsequent production of

controllers preserving stability and performance using some type of potentially scheduled H∞

design, passivity based control, fast adaptive control, or some other method(s) or combination

thereof. Also, improvements could undoubtedly be made to the system presented here and to

many similar systems by directly taking into account implementation issues such as variable

latency and/or sampling rate variance due to either a network/OS setup as was the case here

or implementation on local hardware with shared resources.
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APPENDIX A. Earth as a Frame of Reference

Assuming some inertial frame of reference, and defining the position of the center of the Earth

to be χ, the angular velocity of the Earth around it’s axis of rotation as Ω, the radius of the

Earth frame of reference origin from the planet’s center r, and the vector from the Earth frame

of reference origin to any given point p, the position vector of that point in the inertial frame

of reference, X = χ+ r + p.

Differentiating to obtain velocity:

Ẋ = χ̇+Ω× r +Ω× p+ ṗ

And again for acceleration:

Ẍ = χ̈+ Ω̇× r +Ω× (Ω× r) + Ω̇× p+Ω× ṗ+ p̈+Ω× (Ω× p) + Ω× ṗ

Since r̈ = ṙ = 0, the quantity R = r + p can be defined which allows the above equation to be

simplified to:

Ẍ = χ̈+ R̈+ Ω̇×R+ 2Ω× Ṙ+Ω× (Ω ×R)

The acceleration of the center of the planet, χ̈, tangental acceleration Ω̇×R due to changes in

Earth’s angular velocity about it’s axis, and centripetal acceleration Ω×(Ω×R) are all relatively

small. The angular velocity of the planet around its own axis very small: (2π/24/60/60 ≈

7.2722 × 10−5 rads ). Thus the Coriolis effect (2Ω × Ṙ) is important for objects with very high

velocity and or few significant external forces, such as high velocity projectiles, rockets, and

weather patterns[20]. For the purposes of the model used here, the only significant term is R̈,

the acceleration of the craft relative to the Earth frame of reference origin.
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APPENDIX B. Pseudo-Inverse Matrix for Overdetermined Systems

Given data that can be expressed–possibly via some manipulation–as multiple linear combina-

tions of some unknown parameters with measured and controlled variables, with the number of

combinations greater than the number of parameters, an overdetermined system can be defined.

Using the variable j to index each of m equations that can be formed using a set of n unknown

parameters x1 to xn in linear combination with the measured or controled values a1j to anj

equaling the measured or controlled values bj plus some lumped error ǫj (See e.g. Chapter 3

of [54] for more detail), each equation can be expressed:

a1jx1 + a2jx2 + · · ·+ anjxn = bj + ǫj ∀j ∈ 1, 2, 3, ...,m

And collectively formed into:

Ax = b+ ǫ

With A ∈ R
m×n, m > n. The best choice of parameters x is taken to be that which minimizes

the Euclidian magnitude squared of the assumed error ǫ, i.e. that which minimizes:

‖ǫ‖22 = ‖Ax− b‖22

Since ‖ǫ‖22 = ‖Ax − b‖22 is differentiable in x and can easily be shown to be convex in x, the

optimal value can be found by setting its derivative in terms of x to 0. Expressing the function

to be minimized as:

‖ǫ‖22 = (Ax− b)T (Ax− b) = xTATAx− 2bTAx+ bT b

And setting the derivative in terms of x to 0 leads to:

xTATA = bTA
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Which can be solved for x as:

x = (ATA)−1AT b

With the pseudo-inverse of the matrix A ∈ R
m×n begin the quantity (ATA)−1AT . For more

explanation and background on least-squares estimation and further applications (e.g. recursive

estimation) see [54], and for far more in-depth treatment of both least-squares optimization

and optimization in general see [55].
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APPENDIX C. Linearization

Generally speaking, given the nonlinear system where f is the state equation, y the output

equation, x is the state vector, u is the input vector, and t represents time:

ẋ(t) = f(x(t), u(t))

y = h(x(t), u(t))

Linearization can be accomplished using Taylor Series expansion, and keeping only first order

terms:

ẋ(t) ≈ f(x∗, u∗) +
∂f

∂x

∣

∣

∣

∣

x=x∗
u=u∗

(x− x∗) +
∂f

∂u

∣

∣

∣

∣

x=x∗
u=u∗

(u− u∗)

y ≈ h(x∗, u∗) +
∂h

∂x

∣

∣

∣

∣

x=x∗
u=u∗

(x− x∗) +
∂h

∂u

∣

∣

∣

∣

x=x∗
u=u∗

(u− u∗)

Linearization around an equilibrium point or trajectory1 implies f(x∗, u∗) = 0. Defnining

equilibrium output:

y∗ = h(x∗, u∗)

And each of the Jacobian matrices:

A =
∂f

∂x

∣

∣

∣

∣

x=x∗
u=u∗

B =
∂f

∂u

∣

∣

∣

∣

x=x∗
u=u∗

C =
∂h

∂x

∣

∣

∣

∣

x=x∗
u=u∗

D =
∂h

∂u

∣

∣

∣

∣

x=x∗
u=u∗

And finally a change of state/input coordinates:

z = x− x∗ v = u− u∗

The linear system approximating the original around the equilibrium point can be written:

ż = Az +Bv y = y∗ + Cz +Dv

1Of course this is under the assumption that the equilibrium point or trajectory is accurately known. Para-
metric uncertainty, modeling error or lacking model dynamics can lead to non-zero f(x∗, u∗)
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APPENDIX D. OptiTrack System Setup and Euler Angle Issues

In order to properly use the OptiTrack system, the cameras need to be arranged in some

constellation with overlapping fields of view and the whole system calibrated. The calibration

process is described on the company website in tutorial videos and user manuals [48]. With a

given calibration, a set ground plane step is required, which essentially determines the equivalent

of the inertial (Earth) frame axes (see Section 2.1) of this model. This is done by using a tool

provided by OptiTrack, similar in shape to a carpenter’s square with three special reflective

markers attached to make a specific shape. This tool and the Tracking Tools software by

default1 set the ground plane such that positive y-axis is opposed to the acceleration of gravity,

or up (assuming a horizontal floor). This setup was not used for the following reasons:

1. The inertial axes of this model as detailed in Section 2.1 are such that the positive z-axis

is along the acceleration of gravity, and hence the x and y axes would be in the equivalent

ground plane. It was desirable to have the axes matching those of the model.

2. More importantly, the sequency of rotations used in this model (as described in Section

2.1.3) to give orientation is Yaw-Pitch-Roll, i.e. a ZYX convention. This is the same

convention assumed by the VRPN libraries allowing the quaternion data to be translated

into the correct Euler angles. This means that in order to obtain the correct Euler angles

through VRPN, the axes must be set up so that they match those of this model,

i.e. the positive z-axis along the acceleration of gravity2.

1By default meaning if the ground plane tool is placed on the floor on its rubber feet as obviously intended.
2It may seem as though one could simply use the ground plane in its default position and switch the yaw and

pitch angles in order to still obtain the correct magnitude angles with the VRPN functions, and simply negate
the resulting yaw to give the correct sign. However, this is not the case and such an approach will fail to give
the correct angles in general even if it works for some circumstances.

This attempted fix will produce correct magnitude angles only when a single angle is changed. Also, due
to the fact that what would be read as yaw would be in calculations treated like pitch in a ZYX convention,
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Althougth setting the system up this way does mean that the angles given in the Tracking Tools

real time display will be incorrect3, it is necessary to gurarantee the correct angles are obtained

at the control PC. The VRPN functions that use the quaternions provided to calculate yaw,

pitch, and roll, assume that the sequence of rotations was yaw first, around the positive z-axis,

followed by pitch and roll around equivalent y and x axes as described more accurately in 2.1.3.

Luckily the ground plane tool provided is such that it can easily be set on its side to make the

axes math those of this model4.

numerical issues witll result at yaw angles of ±90o which is clearly very disadvantageous.
3In any case they would not typically match the angles of this model, since the Tracking Tools software

(for display purposes) follows a XYZ convention and this model uses a ZYX. Incorrect here means incorrect
with respect to a default ground plane positioning with XYZ convention angle sequence. Of course the software
streams the orientation in quaternions which do not have such sequence dependance.

4As mentioned in the user’s guide, but not entirely obvious at first glance, the positive z-axis will be defined
in the opposite direction of the arrow above the z printed on the ground plane tool.
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